Skip to main content

Generalizing Continuous Flexible Kokotsakis Belts of the Isogonal Type

  • 792 Accesses

Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT,volume 146)

Abstract

A. Kokotsakis studied the following problem in 1932: Given is a rigid closed polygonal line (planar or non-planar), which is surrounded by a polyhedral strip, where at each polygon vertex three faces meet. Determine the geometries of these closed strips with a continuous mobility. On the one side, we generalize this problem by allowing the faces, which are adjacent to polygon line-segments, to be skew; i.e. to be non-planar. But on the other side, we restrict to the case where the four angles associated with each polygon vertex fulfill the so-called isogonality condition that both pairs of opposite angles are equal or supplementary. In more detail, we study the case where the polygonal line is a skew quad, as this corresponds to a \((3\times 3)\) building block of a so-called V-hedra composed of skew quads. The latter also gives a positive answer to a question posed by R. Sauer in his book of 1970 whether continuous flexible skew quad surfaces exist.

Keywords

  • Kokotsakis belt
  • Continuous flexibility
  • Skew quad surfaces

Dedicated to my newborn son and his mother on the occasion of his birth.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Assumed that this part of the continuous flexible polyhedra is not rigid.

  2. 2.

    Surfaces on which geodesic lines form a conjugate curve network [3].

  3. 3.

    This notation is in accordance with [6].

  4. 4.

    Note that in the remainder of the paper the indices are taken modulo n.

  5. 5.

    Corresponding faces and edges of these meshes are parallel.

  6. 6.

    The degree of the mobility corresponds to the number of rows plus columns of \(\mathscr {V}\) minus one (cf. Sauer [15, Theorem 11.18]).

References

  1. Kokotsakis, A.: Über bewegliche Polyeder. Math. Ann. 107, 627–647 (1932)

    CrossRef  MathSciNet  Google Scholar 

  2. Karpenkov, O.N.: On the flexibility of Kokotsakis meshes. Geom. Dedicata. 147, 15–28 (2010)

    CrossRef  MathSciNet  Google Scholar 

  3. Voss, A.: Über diejenigen Flächen, auf denen geodätische Linien ein konjugiertes System bilden. Münchner Berichte, pp. 95–102 (1888)

    Google Scholar 

  4. Schief, W.K., Bobenko, A.I., Hoffmann, T.: On the integrability of infinitesimal and finite deformations of polyhedral surfaces. In: Bobenko, A.I. et al. (ed.) Discrete Differential Geometry Oberwolfach Seminars 38, 67–93 (2008)

    Google Scholar 

  5. Evans, T.A., Lang, R.J., Magleby, S.P., Howell, L.L.: Rigidly foldable origami twists. In: Miura, K. et al. (ed.) Origami\(^6\), I: Mathematics, pp. 119–130. American Mathematical Society (2015)

    Google Scholar 

  6. Stachel, H.: A kinematic approach to Kokotsakis meshes. Comput. Aided Geometric Des. 27, 428–437 (2010)

    CrossRef  MathSciNet  Google Scholar 

  7. Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. de Mathématiques pures et appliquées, Liouville 3, 113–148 (1897)

    MATH  Google Scholar 

  8. Stachel, H.: Remarks on Bricard’s flexible octahedra of type 3. In: Proceedings of the 10th International Conference on Geometry and Graphics, 28 July–3 August 2002, Kiev/Ukraine), vol. 1, pp. 8–12 (2002)

    Google Scholar 

  9. Nawratil, G.: Flexible octahedra in the projective extension of the Euclidean 3-space. J. Geom. Graph. 14(2), 147–169 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Nawratil, G., Stachel, H.: Composition of spherical four-bar-mechanisms. In: Pisla, D. et al. (ed.)New Trends in Mechanisms Science–Analysis and Design, pp. 99–106. Springer (2010). https://doi.org/10.1007/978-90-481-9689-0_12

  11. Nawratil, G.: Reducible compositions of spherical four-bar linkages with a spherical coupler component. Mech. Mach. Theory 46(5), 725–742 (2011)

    CrossRef  Google Scholar 

  12. Nawratil, G.: Reducible compositions of spherical four-bar linkages without a spherical coupler component. Mech. Mach. Theory 49, 87–103 (2012)

    CrossRef  Google Scholar 

  13. Izmestiev, I.: Classification of flexible Kokotsakis polyhedra with quadrangular base. Int. Math. Res. Not. 2017(3), 715–808 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Sauer, R., Graf, H.: Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache. Math. Ann. 105, 499–535 (1931)

    CrossRef  MathSciNet  Google Scholar 

  15. Sauer, R.: Differenzengeometrie. Springer (1970). https://doi.org/10.1007/978-3-642-86411-7

  16. Sharifmoghaddam, K., Nawratil, G., Rasoulzadeh, A., Tervooren, J.: Using flexible trapezoidal quad-surfaces for transformable design. In: Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures, IASS. (in press)

    Google Scholar 

  17. Montagne, N., Douthe, C., Tellier, X., Fivet, C., Baverel, O.: Voss surfaces: a design space for geodesic gridshells. J. Int. Assoc. Shell Spat. Struct. 61(206), 255–263 (2020)

    Google Scholar 

  18. Tachi, T.: Generalization of rigid foldable quadrilateral mesh origami. J. Int. Assoc. Shell Spati. Struct. 50(3), 173–179 (2009)

    Google Scholar 

  19. Tachi, T.: Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh. In: Ceccato, C. et al. (ed.) Advances in Architectural Geometry, pp. 87–102. Springer (2010). https://doi.org/10.1007/978-3-7091-0309-8_6

  20. Feng, F., Dang, X., James, R.D., Plucinsky, P.: The designs and deformations of rigidly and flat-foldable quadrilateral mesh origami. J. Mech. Phys. Solids 142, 104018 (2020)

    CrossRef  MathSciNet  Google Scholar 

  21. Dang, X., Feng, F., Plucinsky, P., James, R.D., Duan, H., Wang, J.: Inverse design of deployable origami structures that approximate a general surface. Int. J. Solids Struct. 234–235, 111224 (2022)

    CrossRef  Google Scholar 

  22. Jiang, C., et al.: Using isometries for computational design and fabrication. ACM Trans. Graph. 40(4), 42 (2021)

    Google Scholar 

  23. Li, Z., Schicho, J.: Classification of angle-symmetric 6R linkages. Mech. Mach. Theory 70, 372–379 (2013)

    CrossRef  Google Scholar 

  24. Mitchell, T., Mazurek, A., Hartz, C., Miki, M., Baker, W.: Structural applications of the graphic statics and static-kinematic dualities: rigid origami, self-centering cable nets, and linkage meshes. In: Proceedings of the IASS Annual Symposium (16–20 July 2018, Boston/USA), Symposium: Graphic statics, pp. 1–8(8) (2018)

    Google Scholar 

  25. Bennett, G.T.: The skew isogram mechanism. In: Proceedings of the London Mathematical Society, vol. s2-13(1), pp. 151–173 (1914)

    Google Scholar 

  26. Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsbericht der Österreichischen Akademie der Wissenschaften, Mathem.-Naturw. Klasse IIa 160(1–5), 39–77 (1951)

    Google Scholar 

Download references

Acknowledgements

The research is supported by grant F77 (SFB “Advanced Computational Design”, subproject SP7) of the Austrian Science Fund FWF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nawratil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nawratil, G. (2023). Generalizing Continuous Flexible Kokotsakis Belts of the Isogonal Type. In: Cheng, LY. (eds) ICGG 2022 - Proceedings of the 20th International Conference on Geometry and Graphics. ICGG 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-13588-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13588-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13587-3

  • Online ISBN: 978-3-031-13588-0

  • eBook Packages: EngineeringEngineering (R0)