Skip to main content

The Great Unknown: The Floating Stage as a Neglected Aspect of Social Systems

  • Chapter
  • First Online:
Owl Monkeys

Abstract

In the last few decades, important advances have been made in the knowledge on the behavioral ecology of pair-living primates such as owl monkeys (Aotus spp.). With the growing understanding, researchers have become increasingly aware that populations do consist not only of established family groups but also of solitary “floaters”: dispersing individuals who travel (mostly) solitarily after leaving their natal (or previous breeding) group and before obtaining a breeding position. Floaters may have a profound impact on local operational sex ratios and, thus, population dynamics, with the subsequent potential to change natural and sexual selection pressures on pair-living and sexually monogamous taxa. Unfortunately, floaters are notoriously difficult to study, so assessments of their role on social organization and mating systems remain challenging. Floaters of different taxa experience different selection pressures and employ varying strategies. In owl monkeys, a combination of limits to group size and habitat saturation forces all maturing individuals to become floaters as subadults or young adults, such that floating is essentially a life stage in the species. The dispersal process is accompanied by increased tensions between adults and pre-dispersing individuals, probably due to various aspects of food and mate competition. Owl monkey floaters balance the need for prospecting with avoidance behavior toward groups, with whom they can engage in highly aggressive and potentially lethal interactions, by adapting their ranging behavior to spatial avoidance while seeking proximity at a temporal scale. Some fundamental aspects of floater biology on owl monkey societies (e.g., mortality rates, impact on population dynamics) are still poorly understood. We strongly suggest that floaters in all taxa where they occur are taken more consistently into consideration and efforts are undertaken to improve understanding of their impact on group and population dynamics, and of sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    General linear model: difference floaters vs. young adults: t = 2.5, df = 88, p = 0.015; floaters vs. subadults, (t = 0.95, p = 0.35); subadults vs. young adults, t = 1.6, p = 0.12. Status of individuals was determined using a combination of age and dispersal status, thus modifying the strict classification of adults as any individual over 48 months of age (Huck et al. 2011). Individuals older than the minimum observed age of any floater (34.3 months of age) that had not yet dispersed were classified as pre-dispersed subadults. Individuals that had successfully dispersed to a new group were classified as adults. Among these, all adults not older than the oldest known age of a primary floater (76.0 months of age; this is an estimated age of an individual first identified as a floater, while the oldest age for a floater of known age was 72 months) were classified as young adults. The analysis presented here compared body masses of pre-dispersed subadults, floaters, and young adult breeders. Thus, ages of these three classes were roughly similar, although mean ages were still different (linear regression: floater vs. pre-disperser, t = 3.2, df = 88, p = 0.002; floater vs. young adult, t = 5.5, p < 0.001). As the sexes did not differ in their body masses (t = 0.3, df = 87, p = 0.73), data for males and females were combined. Assumptions of all linear regression models were checked using residual diagnostic plots, and all indicated homogeneity of variance and normality of residuals. Details of capture procedures, aging, and body mass data collection are provided elsewhere (Fernandez-Duque and Rotundo 2003; Juárez et al. 2011).

References

  • Arcese P (1989) Territory acquisition and loss in male song sparrows. Anim Behav 37:45–55

    Article  Google Scholar 

  • Arnold W (1990) The evolution of marmot sociality: I. Why disperse late? Behav Ecol Sociobiol 27:229–237

    Google Scholar 

  • Baker AJ, Dietz JM (1996) Immigration in wild groups of golden lion tamarins (Leontopithecus rosalia). Am J Primatol 38(1):47–56

    Article  PubMed  Google Scholar 

  • Berger J, Gompper ME (1999) Sex ratios in extant ungulates: products of contemporary predation or past life histories? J Mammal 80(4):1084–1113

    Article  Google Scholar 

  • Boyce CCK, Boyce JL (1988) Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J Anim Ecol 57(3):723–736

    Article  Google Scholar 

  • Brekke P et al (2015) Determinants of male floating behaviour and floater reproduction in a threatened population of the hihi (Notiomystis cincta). Evol Appl 8(8):796–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggs E et al (2019) Predicting forest resilience in the Humid Chaco of Formosa, Argentina through the use of long-term ecological monitoring. In: International Society of Tropical Foresters. Yale University, New Haven

    Google Scholar 

  • Brown JL (1969) The buffer effect and productivity in tit populations. Am Nat 103(932):347–354

    Article  Google Scholar 

  • Bruinzeel LW, Van De Pol M (2004) Site attachment of floaters predicts success in territory acquisition. Behav Ecol 15(2):290–296

    Article  Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Campioni L et al (2010) Social status influences microhabitat selection: breeder and floater Eagle Owls Bubo bubo use different post sites. Ibis 152(3):569–579

    Article  Google Scholar 

  • Christensen C, Radford A (2018) Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav Ecol 29:1004–1013

    Article  Google Scholar 

  • Corley M, Fernandez-Duque E (2023, this volume) Dispersal: a critical life-history stage influencing populations, social dynamics, and individual fitness. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Corley M et al (2017a) Hormonal correlates of development and natal dispersal in wild female owl monkeys (Aotus azarae) of Argentina. Horm Behav 96:42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corley M et al (2017b) The role of intragroup agonism in parent-offspring relationships and natal dispersal in monogamous owl monkeys (Aotus azarae) of Argentina. Am J Primatol 79(11):e22712

    Article  Google Scholar 

  • Corley M, Spence-Aizenberg A, Fernandez-Duque E, Valeggia C (2023) Reproductive ecology and behavioral endocrinology of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Culot L et al (2011) Reproductive failure, possible maternal infanticide, and cannibalism in wild moustached tamarins, Saguinus mystax. Primates 52(2):179–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Dammhahn M (2012) Are personality differences in a small iteroparous mammal maintained by a life-history trade-off? Proc R Soc B Biol Sci 279(1738):2645–2651

    Article  Google Scholar 

  • Delgado MDM, Penteriani V (2008) Behavioral states help translate dispersal movements into spatial distribution patterns of floaters. Am Nat 172(4):475–485

    Article  Google Scholar 

  • Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192

    Article  Google Scholar 

  • Dominey WJ (1984) Alternative mating tactics and evolutionarily stable strategies. Am Zool 24(2):385–396

    Article  Google Scholar 

  • Donald PF (2007) Adult sex ratios in wild bird populations. Ibis 149(4):671–692

    Article  Google Scholar 

  • Dubois F, Cézilly F (2002) Breeding success and mate retention in birds: a meta-analysis. Behav Ecol Sociobiol 52(5):357–364

    Article  Google Scholar 

  • Edelman AJ (2011) Sex-specific effects of size and condition on timing of natal dispersal in kangaroo rats. Behav Ecol 22(4):776–783

    Article  Google Scholar 

  • Ekman J, Griesser M (2002) Why offspring delay dispersal: experimental evidence for a role of parental tolerance. Proc R Soc Lond B Biol Sci 269(1501):1709–1713

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    Article  CAS  PubMed  Google Scholar 

  • Ens B et al (1993) Divorce in the long-lived and monogamous oystercatcher, Haematopus ostralegus: incompatibility or choosing the better option? Anim Behav 45:1199–1217

    Article  Google Scholar 

  • Fernandez-Duque E (2009) Natal dispersal in monogamous owl monkeys (Aotus azarai) of the Argentinean Chaco. Behaviour 146(4–5):583–606

    Article  Google Scholar 

  • Fernandez-Duque E (2011) Aotinae: social monogamy in the only nocturnal anthropoid. In: Campbell CJ et al (eds) Primates in perspective, 2nd edn. Oxford University Press, Oxford, pp 139–154

    Google Scholar 

  • Fernandez-Duque E, Huck M (2013) Till death do us part: intense intra-sexual competition, aggression and death in a sexually monomorphic primate species. PLoS One 8(1):e53724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Duque E, Huntington C (2002) Disappearances of individuals from social groups have implications for understanding natal dispersal in monogamous owl monkeys (Aotus azarai). Am J Primatol 57:219–225

    Article  PubMed  Google Scholar 

  • Fernandez-Duque E, Rotundo M (2003) Field methods for capturing and marking Azarai night monkeys. Int J Primatol 24(5):1113–1120

    Google Scholar 

  • Fernandez-Duque E et al (2001) Density and population structure of owl monkeys (Aotus azarai) in the Argentinean Chaco. Am J Primatol 53(3):99–108

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Duque E et al (2002) Environmental determinants of birth seasonality in night monkeys (Aotus azarai) of the Argentinian Chaco. Int J Primatol 23(3):639–656

    Article  Google Scholar 

  • Fernandez-Duque E et al (2020) The evolution of pair-living, sexual monogamy, and cooperative infant care: insights from research on wild owl monkeys, titis, sakis, and tamarins. Am J Phys Anthropol 171(S70):118–173

    Article  PubMed  Google Scholar 

  • Fernandez-Duque E, Rotundo M, Seltzer J, Di Fiore A, Link A (2023) Past, present and future use of technology for field studies of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Funston PJ et al (2003) Reduced dispersal and opportunistic territory acquisition in male lions (Panthera leo). J Zool 259(2):131–142

    Article  Google Scholar 

  • García de la Chica A et al (2020) The life of Fabián, an Azara’s owl monkey (Aotus azarae) of the Argentinean Chaco. Behaviour 157:1113–1125

    Article  Google Scholar 

  • García de la Chica A, Spence-Aizenberg A, Wolovich CK, Evans S, Fernandez-Duque E (2023) The social life of owl monkeys. In: Fernandez-Duque E (ed) Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Gesquiere LR et al (2018) Interbirth intervals in wild baboons: environmental predictors and hormonal correlates. Am J Phys Anthropol 166(1):107–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Giménez MC (2004) Dieta y comportamiento de forrajeo en verano e invierno del mono mirikiná (Aotus azarai azarai) en bosques secos y húmedos del Chaco Argentino. Undergraduate thesis, Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  • Goltsman M et al (2005) Effects of food availability on dispersal and cub sex ratio in the Mednyi Arctic fox. Behav Ecol Sociobiol 59(2):198-206

    Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry, and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11(2):92–98

    Article  CAS  PubMed  Google Scholar 

  • Hogstad O (2014) Ecology and behaviour of winter floaters in a subalpine population of willow tits, Poecile montanus. Ornis Fenn 91:29–38

    Google Scholar 

  • Huck M, Fernandez-Duque E (2012) Children of divorce: effects of adult replacements on previous offspring in Argentinean owl monkeys. Behav Ecol Sociobiol 66(3):505–517

    Article  Google Scholar 

  • Huck M, Fernandez-Duque E (2017) The floater’s dilemma: use of space by wild solitary Azara’s owl monkeys, Aotus azarae, in relation to group ranges. Anim Behav 127:33–41

    Article  Google Scholar 

  • Huck M et al (2011) Growth and development in wild owl monkeys (Aotus azarai) of Argentina. Int J Primatol 32(5):1133–1152

    Article  Google Scholar 

  • Huck M et al (2014) Correlates of genetic monogamy in socially monogamous mammals: insights from Azara’s owl monkeys. Proc R Soc B Biol Sci 281:20140195

    Article  Google Scholar 

  • Huck M et al (2020) Of apples and oranges? The evolution of “monogamy” in non-human primates. Front Ecol Evol 7:e472

    Article  Google Scholar 

  • Hunt WG (1998) Raptor floaters at Moffat’s equilibrium. Oikos 82(1):191–197

    Article  Google Scholar 

  • Juárez CP (2012) Demogafía e historia de vida del mono mirikiná (Aotus a. azarai) en el Chaco Húmedo Formoseño. Doctoral dissertation, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina

    Google Scholar 

  • Juárez CP et al (2011) Costs and benefits of radio-collaring on the behavior, demography and conservation of owl monkeys (Aotus azarai) in Formosa, Argentina. Int J Primatol 32(1):69–82

    Article  Google Scholar 

  • Kappeler PM (2017) Sex roles and adult sex ratios: insights from mammalian biology and consequences for primate behaviour. Philos Trans R Soc Lond B Biol Sci 372(1729):20160321

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempenaers B et al (2001) Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behav Ecol Sociobiol 49(4):251–259

    Google Scholar 

  • Kluyver HN, Tinbergen L (1953) Territory and regulation of density in titmice. Arch Néerl Zool 10:265–287

    Article  Google Scholar 

  • Kokko H, Sutherland WJ (1998) Optimal floating and queuing strategies: consequences for density dependence and habitat loss. Am Nat 152(3):354–366

    Article  CAS  PubMed  Google Scholar 

  • Kvarnemo C, Merilaita S (2006) Mating distribution and its temporal dynamics affect operational sex ratio: a simulation study. Biol J Linn Soc 89(3):551–559

    Article  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen & Co Ltd, London

    Google Scholar 

  • Lenda M et al (2012) The evolutionary, ecological and behavioural consequences of the presence of floaters in bird populations. North West J Zool 8(2):394–408

    Google Scholar 

  • Löttker P et al (2004) Demographic parameters and events in wild moustached tamarins (Saguinus mystax). Am J Primatol 64:425–449

    Article  PubMed  Google Scholar 

  • Melzheimer J et al (2018) Queuing, takeovers, and becoming a fat cat: long-term data reveal two distinct male spatial tactics at different life-history stages in Namibian cheetahs. Ecosphere 9(6):e02308

    Article  Google Scholar 

  • Mitchell CL (1994) Migration alliances and coalitions among adult male South American squirrel monkeys (Saimiri sciureus). Behaviour 130:169–190

    Article  Google Scholar 

  • Moreno J (2016) The unknown life of floaters: the hidden face of sexual selection. Ardeola 63(1):49–77

    Article  Google Scholar 

  • Moschilla JA et al (2018) State-dependent changes in risk-taking behaviour as a result of age and residual reproductive value. Anim Behav 142:95–100

    Article  Google Scholar 

  • Newton I (1992) Experiments on the limitation of bird numbers by territorial behaviour. Biol Rev 67(2):129–173

    Article  Google Scholar 

  • Nishida T et al (2003) Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. Am J Primatol 59(3):99–121

    Article  PubMed  Google Scholar 

  • Nunes S et al (1999) Energetic and endocrine mediation of natal dispersal behavior in Belding’s ground squirrels. Horm Behav 35(2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Onyango PO et al (2013) Puberty and dispersal in a wild primate population. Horm Behav 64(2):240–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Penteriani V, Delgado MDM (2012) There is a limbo under the moon: what social interactions tell us about the floaters’ underworld. Behav Ecol Sociobiol 66(2):317–327

    Article  Google Scholar 

  • Penteriani V et al (2011) Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim Conserv 14(3):233–241

    Article  Google Scholar 

  • Penteriani V et al (2015) Quantifying space use of breeders and floaters of a long-lived species using individual movement data. Sci Nat 102(5):21

    Article  Google Scholar 

  • Port M, Johnstone RA (2013) Facing the crowd: intruder pressure, within-group competition, and the resolution of conflicts over group-membership. Ecol Evol 3(5):1209–1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size? In: Krebs JR, Davies NB (eds) Behavioural ecology – an evolutionary approach, 2nd edn. Blackwell Science, Oxford, pp 123–147

    Google Scholar 

  • Rimbach R et al (2019) Daily energy expenditure of males following alternative reproductive tactics: solitary roamers spend more energy than group-living males. Physiol Behav 199:359–365

    Article  CAS  PubMed  Google Scholar 

  • Rohner C (1996) The numerical response of great horned owls to the snowshoe hare cycle: consequences of non-territorial “floaters” on demography. J Anim Ecol 65(3):359–370

    Article  Google Scholar 

  • Rohner C (1997) Non-territorial floaters in great horned owls (Bubo viginianus). In: Biology and conservation of owls of the northern hemisphere: 2nd international symposium, General technical report NC-190. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, pp 347–362

    Google Scholar 

  • Rosell F, Bjørkøyli T (2002) A test of the dear enemy phenomenon in the Eurasian beaver. Anim Behav 63(6):1073–1078

    Article  Google Scholar 

  • Saitou T (2001) Floaters as intraspecific brood parasites in the grey starling Sturnus cineraceus. Ecol Res 16(2):221–231

    Google Scholar 

  • Scheibler E et al (2006) Male expulsion in cooperative Mongolian gerbils (Meriones unguiculatus). Physiol Behav 87(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Schradin C, Lindholm AK (2011) Relative fitness of alternative male reproductive tactics in a mammal varies between years. J Anim Ecol 80(5):908–917

    Article  PubMed  Google Scholar 

  • Schradin C et al (2009) Testosterone levels in dominant sociable males are lower than in solitary roamers: physiological differences between three male reproductive tactics in a sociably flexible mammal. Am Nat 173(3):376–388

    Article  PubMed  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Book  Google Scholar 

  • Smith JNM, Arcese P (1989) How fit are floaters? Consequences of alternative territorial behaviors in a nonmigratory sparrow. Am Nat 133(6):830–845

    Article  Google Scholar 

  • Snyder-Mackler N et al (2012) Defining higher levels in the multilevel societies of geladas (Theropithecus gelada). Int J Primatol 33(5):1054–1068

    Article  Google Scholar 

  • Solmsen N et al (2011) Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol Ecol 20(8):1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Strier KB, Ziegler TE (2000) Lack of pubertal influences on female dispersal in muriqui monkeys, Brachyteles arachnoides. Anim Behav 59(4):849–860

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MJP et al (2015) Evidence for the buffer effect operating in multiple species at a national scale. Biol Lett 11(1):20140930

    Article  PubMed  PubMed Central  Google Scholar 

  • Taborsky M et al (2008) The evolution of alternative reproductive tactics: concepts and questions. In: Brockmann HJ et al (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 1–22

    Google Scholar 

  • Tarwater CE, Brawn JD (2010) Family living in a Neotropical bird: variation in timing of dispersal and higher survival for delayed dispersers. Anim Behav 80(3):535–542

    Article  Google Scholar 

  • Utami SS et al (2002) Male bimaturism and reproductive success in Sumatran orang-utans. Behav Ecol 13(5):643–652

    Article  Google Scholar 

  • van der Heide G et al (2012) Do forest composition and fruit availability predict demographic differences between owl monkey (Aotus azarai) groups inhabiting a gallery forest in Formosa, Argentina? Int J Primatol 33(1):184–207

    Google Scholar 

  • van der Heide G, Dávalos V, Fernandez-Duque E (2023) Flexibility in the diet and feeding ecology of nocturnal and cathemeral Aotus. In: Fernandez-Duque E (ed) Owl Monkeys. Owl Monkeys. Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas. Springer, Cham

    Google Scholar 

  • Veiga JP et al (2012) Intruders in nests of the spotless starling: prospecting for public information or for immediate nesting resources? Ethology 118(10):917–924

    Article  Google Scholar 

  • Vuarin P et al (2019) Elevated basal corticosterone levels increase disappearance risk of light but not heavy individuals in a long-term monitored rodent population. Horm Behav 113:95–102

    Article  CAS  PubMed  Google Scholar 

  • Wada H (2008) Glucocorticoids: mediators of vertebrate ontogenetic transitions. Gen Comp Endocrinol 156(3):441–453

    Article  CAS  PubMed  Google Scholar 

  • Wartmann FM, Juárez CP, Fernandez-Duque E (2014) Size, site fidelity and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int J Primatol 35, 919–939. https://doi.org/10.1007/s10764-014-9771-7

  • Wauters L et al (1994) Survival and lifetime reproductive success in dispersing and resident red squirrels. Behav Ecol Sociobiol 34(3):197–201

    Article  Google Scholar 

  • Yasukawa K (2013) Effects of age and experience on the responses of territorial and floater male red-winged blackbirds to models of receptive females. J Field Ornithol 84(4):377–388

    Article  Google Scholar 

  • Zack S, Stutchbury BJ (1992) Delayed breeding in avian social systems: the role of territory quality and “floater” tactics. Behaviour 123(3–4):194

    Article  Google Scholar 

  • Zimmer C et al (2011) Evidence of the trade-off between starvation and predation risks in ducks. PLoS One 6(7):e22352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Formosa Province and Argentinean governments for permission to conduct our research. Special thanks to Bellamar Estancias and Fundación ECO for support in Argentina. Our research would not have been possible without the help of the more than 300 students and volunteers who over the years have provided research assistance in the field. We are also grateful to Juan Moreno and Carsten Schradin for their valuable feedback on an early version of the chapter. Fieldwork for this project was supported through grants to EFD from the Wenner-Gren Foundation, L.S.B. Leakey Foundation, National Geographic Society, National Science Foundation (NSF-BCS-0621020, 1232349, 1503753, 1848954; RAPID-1219368, DDIG-1540255; NSF-REU 0837921, 0924352, 1026991), and the National Institutes of Aging (NIA- P30 AG012836-19, NICHD R24 HD-044964-11). The Owl Monkey Project also received institutional support from the Zoological Society of San Diego, the University of Pennsylvania, and Yale University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Huck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Eduardo Fernandez-Duque

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huck, M., Fernandez-Duque, E. (2023). The Great Unknown: The Floating Stage as a Neglected Aspect of Social Systems. In: Fernandez-Duque, E. (eds) Owl Monkeys. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-13555-2_16

Download citation

Publish with us

Policies and ethics