Skip to main content

Electrophysiology and Fatigue

  • Chapter
  • First Online:
Fatigue in Multiple Sclerosis
  • 450 Accesses

Abstract

This chapter is devoted to the following topics:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboodarda SJ, Fan S, Coates K, Millet GY. The short-term recovery of corticomotor responses in elbow flexors. BMC Neurosci. 2019;20(1):9.

    Article  Google Scholar 

  • Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Neuroscience. 2016;314:125–33.

    Article  CAS  Google Scholar 

  • Bächinger M, Lehner R, Thomas F, Hanimann S, Balsters J, Wenderoth N. Human motor fatigability as evoked by repetitive movements results from a gradual breakdown of surround inhibition. elife. 2019;8:e46750.

    Article  Google Scholar 

  • Bäumer T, Münchau A, Weiller C, Liepert J. Fatigue suppresses ipsilateral intracortical facilitation. Exp Brain Res. 2002;146:467–73.

    Article  Google Scholar 

  • Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Exp Brain Res. 2006;170(2):191–8.

    Article  Google Scholar 

  • Brownstein CG, Dent JP, Parker P, Hicks KM, Howatson G, Goodall S, Thomas K. Etiology and recovery of neuromuscular fatigue following competitive soccer match-play. Front Physiol. 2017;8:831.

    Article  Google Scholar 

  • Cancelli A, Cottone C, Giordani A, Migliore S, Lupoi D, et al. Personalized, bilateral whole-body somatosensory cortex stimulation to relieve fatigue in multiple sclerosis. Mult Scler. 2018;24(10):1366–74.

    Article  Google Scholar 

  • Capone F, Motolese F, Falato E, Rossi M, Di Lazzaro V. The potential role of neurophysiology in the management of multiple sclerosis-related fatigue. Front Neurol. 2020;11:251.

    Article  Google Scholar 

  • Capone F, Motolese F, Rossi M, Musumeci G, Insola A, Di Lazzaro V. Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: a neurophysiological study. Mult Scler Relat Disord. 2019;39:101897.

    Article  Google Scholar 

  • Chalah MA, Kauv P, Créange A, Hodel J, Lefaucheur JP, Ayache SS. Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Mult Scler Relat Disord. 2019;28:145–52.

    Article  Google Scholar 

  • Chaves AR, Kelly LP, Moore CS, Stefanelli M, Ploughman M. Prolonged cortical silent period is related to poor fitness and fatigue, but not tumor necrosis factor, in multiple sclerosis. Clin Neurophysiol. 2019;130(4):474–83.

    Article  Google Scholar 

  • Cinelli KTM, Green LA, Kalmar JM. The task at hand: fatigue-associated changes in cortical excitability during writing. Brain Sci. 2019;9(12):E353.

    Article  Google Scholar 

  • Conte A, Lenzi D, Frasca V, Gilio F, Giacomelli E, Gabriele M, Bettolo CM, Iacovelli E, Pantano P, Pozzilli C, Inghilleri M. Intracortical excitability in patients with relapsing-remitting and secondary progressive multiple sclerosis. J Neurol. 2009;256(6):933–8.

    Article  CAS  Google Scholar 

  • Conte A, Li Voti P, Pontecorvo S, Quartuccio ME, Baione V, et al. Attention-related changes in short-term cortical plasticity help to explain fatigue in multiple sclerosis. Mult Scler. 2016;22(10):1359–66.

    Article  Google Scholar 

  • Finn HT, Rouffet DM, Kennedy DS, Green S, Taylor JL. Motoneuron excitability of the quadriceps decreases during a fatiguing submaximal isometric contraction. J Appl Physiol (1985). 2018;124(4):970–9.

    Article  Google Scholar 

  • Goodall S, Howatson G, Thomas K. Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males. Exp Brain Res. 2018;236(2):463–73.

    Article  Google Scholar 

  • Grimby L, Hannerz J, Hedman B. The fatigue and voluntary discharge properties of single motor units in man. J Physiol. 1981;316:545–4.

    Article  CAS  Google Scholar 

  • Gruet M, Temesi J, Rupp T, Levy P, Verges S, Millet GY. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Exp Physiol. 2014;99(8):1053–64.

    Article  Google Scholar 

  • Humphry AT, Lloyd-Davies EJ, Teare RJ, Williams KE, Strutton PH, Davey NJ. Specificity and functional impact of post-exercise depression of cortically evoked motor potentials in man. Eur J Appl Physiol. 2004;92:211–8.

    Article  CAS  Google Scholar 

  • Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Exp Brain Res. 2016;234(9):2541–51.

    Article  Google Scholar 

  • Kalmar JM, Cafarelli E. Central fatigue and transcranial magnetic stimulation: effect of caffeine and the confound of peripheral transmission failure. J Neurosci Methods. 2004;138(1-2):15–26.

    Article  CAS  Google Scholar 

  • Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology. 2013;80(4):409–16.

    Article  Google Scholar 

  • Koral J, Oranchuk DJ, Wrightson JG, Twomey R, Millet GY. Mechanisms of neuromuscular fatigue and recovery in unilateral versus bilateral maximal voluntary contractions. J Appl Physiol. 2020;128(4):785–94.

    Article  Google Scholar 

  • Kotan S, Kojima S, Miyaguchi S, Sugawara K, Onishi H. Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction. Front Hum Neurosci. 2015;9:363.

    Article  Google Scholar 

  • Lange R, Volkmer M, Heesen C, Liepert J. Modafinil effects in multiple sclerosis patients with fatigue. J Neurol. 2009;256(4):645–50.

    Article  CAS  Google Scholar 

  • Latella C, van der Groen O, Ruas CV, Taylor JL. Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles. J Appl Physiol (1985). 2020;128(1):149–58.

    Article  CAS  Google Scholar 

  • Leocani L, Colombo B, Comi G. Physiopathology of fatigue in multiple sclerosis. Neurol Sci. 2008;29(Suppl 2):S241-3.

    Google Scholar 

  • Leocani L, Colombo B, Magnani G, Martinelli-Boneschi F, Cursi M, et al. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement—EEG evidence. NeuroImage. 2001;13(6 Pt 1):1186–92.

    Article  CAS  Google Scholar 

  • Liepert J. Electrophysiology and fatigue. In: Penner I-K, editor. Fatigue in Multiple Sclerosis. Bad Honnef: Hippocampus Verlag; 2009. p. 114–25.

    Google Scholar 

  • Liepert J, Mingers D, Heesen C, Bäumer T, Weiller C. Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study. Mult Scler. 2005;11(3):316–21.

    Article  CAS  Google Scholar 

  • Liu M, Fan S, Xu Y, Cui L. Non-invasive brain stimulation for fatigue in multiple sclerosis patients: a systematic review and meta-analysis. Mult Scler Relat Disord. 2019;36:101375.

    Article  Google Scholar 

  • Macefield VG, Fuglevand AJ, Howell JN, Bigland-Ritchie B. Discharge behaviour of single motor units during maximal voluntary contractions of a human toe extensor. J Physiol. 2000;528(Pt 1):227–34.

    Article  CAS  Google Scholar 

  • Marion S, Leonid C, Belinda B, Joanne D, Elise H, Leeanne C, Richard M. Effects of modified-release fampridine on upper limb impairment in patients with multiple sclerosis. Mult Scler Relat Disord. 2020;40:101971.

    Article  Google Scholar 

  • Maruyama A, Matsunaga K, Tanaka N, Rothwell JC. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks. Clin Neurophysiol. 2006;117(4):864–70.

    Article  Google Scholar 

  • McKay WB, Tuel SM, Sherwood AM, Stokič DS, Dimitrijevič MR. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study. Exp Brain Res. 1995;105:276–82.

    Article  CAS  Google Scholar 

  • McNeil CJ, Martin PG, Gandevia SC, Taylor JL. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. J Physiol. 2009;587(Pt 23):5601–12.

    Article  CAS  Google Scholar 

  • Mills KR. Power spectral analysis of electromyogram and compound muscle action potential during muscle fatigue and recovery. J Physiol. 1982;326:401–9.

    Article  CAS  Google Scholar 

  • Mordillo-Mateos L, Soto-Leon V, Torres-Pareja M, Peinado-Palomino D, Mendoza-Laiz N, et al. Fatigue in multiple sclerosis: general and perceived fatigue does not depend on corticospinal tract dysfunction. Front Neurol. 2019;10:339.

    Article  Google Scholar 

  • Morgante F, Dattola V, Crupi D, Russo M, Rizzo V, et al. Is central fatigue in multiple sclerosis a disorder of movement preparation? J Neurol. 2011;258(2):263–72.

    Article  Google Scholar 

  • Nielsen JF, Nørgaard P. Increased postexercise facilitation of motor evoked potentials in multiple sclerosis. Clin Neurophysiol. 2002;113:1295–300.

    Article  Google Scholar 

  • O'Leary TJ, Collett J, Morris MG. High-intensity exhaustive exercise reduces long-interval intracortical inhibition. Exp Brain Res. 2018;236(12):3149–58.

    Article  CAS  Google Scholar 

  • Perretti A, Balbi P, Orefice G, Trojano L, Marcantonio L, et al. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Clin Neurophysiol. 2004;115(9):2128–33.

    Article  CAS  Google Scholar 

  • Russo M, Calamuneri A, Cacciola A, Bonanno L, Naro A, Dattola V, et al. Neural correlates of fatigue in multiple sclerosis: a combined neurophysiological and neuroimaging approach (R1). Arch Ital Biol. 2017;155(3):142–51.

    CAS  Google Scholar 

  • Samii A, Canos M, Ikoma K, Wassermann EM, Hallett M. Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol. 1997;105:241–5.

    Article  CAS  Google Scholar 

  • Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M. Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology. 1996;46:1376–82.

    Article  CAS  Google Scholar 

  • Sandroni P, Walker C, Starr A. 'Fatigue' in patients with multiple sclerosis. Motor pathway conduction and event-related potentials. Arch Neurol. 1992;49(5):517–24.

    Article  CAS  Google Scholar 

  • Santarnecchi E, Rossi S, Bartalini S, Cincotta M, Giovannelli F, Tatti E, Ulivelli M. Neurophysiological correlates of central fatigue in healthy subjects and multiple sclerosis patients before and after treatment with amantadine. Neural Plast. 2015;2015:616242.

    Article  Google Scholar 

  • Severijns D, Zijdewind I, Dalgas U, Lamers I, Lismont C, Feys P. The assessment of motor fatigability in persons with multiple sclerosis: a systematic review. Neurorehabil Neural Repair. 2017;31(5):413–31.

    Article  Google Scholar 

  • Sharples SA, Gould JA, Vandenberk MS, Kalmar JM. Cortical mechanisms of central fatigue and sense of effort. PLoS One. 2016;11(2):e0149026.

    Article  Google Scholar 

  • Sheean GL, Murray NM, Rothwell JC, Miller DH, Thompson AJ. An open-labelled clinical and electrophysiological study of 3,4 diaminopyridine in the treatment of fatigue in multiple sclerosis. Brain. 1998;121(Pt 5):967–75.

    Article  Google Scholar 

  • Sheean GL, Murray NMF, Rothwell JC, Miller DH, Thompson AJ. An electrophysiological study of the mechanism of fatigue in multiple sclerosis. Brain. 1997;120:299–315.

    Article  Google Scholar 

  • Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol. 2006;573(Pt 2):511–23.

    Article  Google Scholar 

  • Steens A, de Vries A, Hemmen J, Heersema T, Heerings M, Maurits N, Zijdewind I. Fatigue perceived by multiple sclerosis patients is associated with muscle fatigue. Neurorehabil Neural Repair. 2012;26(1):48–57.

    Article  Google Scholar 

  • Takahashi K, Maruyama A, Maeda M, Etoh S, Hirakoba K, Kawahira K, Rothwell JC. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clin Neurophysiol. 2009;120(1):198–203.

    Article  Google Scholar 

  • Tecchio F, Cancelli A, Cottone C, Ferrucci R, Vergari M, et al. Brain plasticity effects of neuromodulation against multiple sclerosis fatigue. Front Neurol. 2015;6:141.

    Article  Google Scholar 

  • Temesi J, Rupp T, Martin V, Arnal PJ, Féasson L, Verges S, Millet GY. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc. 2014;46(6):1166–75.

    Article  Google Scholar 

  • Temesi J, Vernillo G, Martin M, Kruger RL, McNeil CJ, Millet GY. Sustained maximal voluntary contractions elicit different neurophysiological responses in upper- and lower-limb muscles in men. Neuroscience. 2019;422:88–98.

    Article  CAS  Google Scholar 

  • Thickbroom GW, Sacco P, Faulkner DL, Kermode AG, Mastaglia FL. Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis. J Neurol. 2008;255(7):1001–5.

    Article  Google Scholar 

  • Thickbroom GW, Sacco P, Kermode AG, Archer SA, Byrnes ML, Guilfoyle A, Mastaglia FL. Central motor drive and perception of effort during fatigue in multiple sclerosis. J Neurol. 2006;253(8):1048–53.

    Article  Google Scholar 

  • White AT, Petajan JH. Physiological measures of therapeutic response to interferon beta-1a treatment in remitting-relapsing MS. Clin Neurophysiol. 2004;115:2364–71.

    Article  CAS  Google Scholar 

  • Williams PS, Hoffman RL, Clark BC. Cortical and spinal mechanisms of task failure of sustained submaximal fatiguing contractions. PLoS One. 2014;9(3):e93284.

    Article  Google Scholar 

  • Wrightson JG, Twomey R, Yeung STY, Millet GY. No effect of tDCS of the primary motor cortex on isometric exercise performance or perceived fatigue. Eur J Neurosci. 2020;52(2):2905–14.

    Article  Google Scholar 

  • Yacyshyn AF, McNeil CJ. The sexes do not differ for neural responses to submaximal elbow extensor fatigue. Med Sci Sports Exerc. 2020;52(9):1992–2001.

    Article  Google Scholar 

  • Yoon T, Schlinder-Delap B, Keller ML, Hunter SK. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults. J Appl Physiol (1985). 2012;112(5):849–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liepert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liepert, J. (2023). Electrophysiology and Fatigue. In: Penner, IK. (eds) Fatigue in Multiple Sclerosis. Springer, Cham. https://doi.org/10.1007/978-3-031-13498-2_12

Download citation

Publish with us

Policies and ethics