Skip to main content

Variability of Mangroves Along the Brazilian Coast: Revisiting

  • Chapter
  • First Online:
Brazilian Mangroves and Salt Marshes

Abstract

Brazil’s coastline contains landscape features that are favorable for mangrove development. By revisiting the 1990 paper entitled “Variability of Mangroves Along the Brazilian Coast,” we review aspects of the notion of variability, considering coasts among the most dynamic places on the planet, shifting from a theoretical to an empiric approach. In the previous work, hereafter referred to as the 1990 paper, we suggested mangroves developed in seven out of eight coastal segments inspired by the coastal environmental settings’ framework. We expand the previous work using concepts of complex systems theory to illuminate contemporaneous coastal management issues related to multiple spatial and temporal scales. Here, we suggest that these eight segments occur within three major process domains: Northernmost Domain, Central Deltaic Coast Domain, and Cabo Frio do Laguna Domain, where different factors work together to form geoecological characteristics that are unique, and irreplaceable if lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term Coastal Environmental Settings (CESs) refer to a typology of mangrove-occurring localities that share certain composed by geophysical, geomorphic, and biologic characteristics.

  2. 2.

    CGMFC-21 (project): Continuous Global Mangrove Forest Cover for the Twenty-first Century.

  3. 3.

    MFW (dataset): Mangrove Forest Cover Loss dataset.

References

  • Adame MF, Cherian S, Reef R, Stewart-Koster B (2017) Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecol Manag 403:52–60

    Article  Google Scholar 

  • Agraz-Hernández CM, Keb CAC, Iriarte-Vivar S, Venegas GP, Serratos BV, Sáenz JO (2015) Phenological variation of Rhizophora mangle and ground water chemistry associated to changes of the precipitation. Hydrobiologia 25(1):49–61

    Google Scholar 

  • Allen TFH, Hoekstra TW (1992) Toward a unified ecology. Columbia University Press, New York

    Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331–349

    Article  Google Scholar 

  • Atwood TB, Connolly RM, Almahasheer H, Carnell PE, Duarte CM, Lewis CJE, Irigoien X, Kelleway JJ, Lavery PS, Macreadie PI, Serrano O, Sanders CJ, Santos I, Steven ADL, Lovelock CE (2017) Global patterns in mangrove soil carbon stocks and losses. Nat Clim Change 7(7):523–528

    Article  CAS  Google Scholar 

  • Blackburn TM, Gaston KJ (2002) Scale in macroecology. Glob Ecol Biogeogr 11(3):185–189

    Article  Google Scholar 

  • Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:2

    Article  Google Scholar 

  • Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2012) FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. In: Ouwehand L (ed) 20 years of progress in radar altimetry, Venice, 24–29 September 2013

    Google Scholar 

  • Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2013) FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. In: Proceedings of ‘20 years of progress in radar altimetry’, 24–29 September 2012, Venice, Italy

    Google Scholar 

  • Castañeda-Moya E, Rivera-Monroy VH, Twilley RR (2006) Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras. Estuar Coast 29(5):751–764

    Article  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SML (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14(7):1178–1195

    Article  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH (2013) Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For Ecol Manag 307:226–241

    Article  Google Scholar 

  • Chapman VJ (1975) Mangrove vegetation. J. Cramer, Vaduz

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycle 17(4):22–1–22–12

    Article  Google Scholar 

  • Cintrón G, Schaeffer-Novelli Y (1981) Los manglares de la costa brasileña: revisión preliminar de la literatura. In: Informe Técnico preparado para la Oficina Regional de Ciencia y Tecnología para América Latina y el Caribe de Unesco y la Universidad Federal de Santa Catarina (ed/rev: Abuchahla GMO). UNESCO, p 47. http://www.producao.usp.br/handle/BDPI/43826

  • Cintrón G, Lugo AE, Pool DJ, Morris G (1978) Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10(2):110–121

    Article  Google Scholar 

  • Cintrón-Molero G, Schaeffer-Novelli Y (2019) The role of atmospheric-tropospheric rivers in partitioning coastal habitats and limiting the poleward expansion of mangroves along the southeast coast of Brazil. Int J Hydrol 3(2):92–94

    Google Scholar 

  • Clough BF (1992) Primary productivity and growth of mangrove forests. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 225–249

    Chapter  Google Scholar 

  • Cohen S, Kettner AJ, Syvitski JPM, Fekete BM (2013) WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput Geosci 53:80–93

    Article  Google Scholar 

  • Costa CSB, Davy AJ (1992) Coastal Saltmarsh communities of Latin America. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, San Diego, pp 179–199

    Chapter  Google Scholar 

  • Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA (2013) Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob Ecol Biogeogr 22:806–817

    Article  Google Scholar 

  • Day JW Jr, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Alvarez-Guillen H, Day R, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55:39–60

    Article  Google Scholar 

  • Delaney PJV (1962) Quaternary geologic history of the coastal plain of Rio Grande do Sul, Brazil. S Am Coast Stu Techn Rep 10(A):1–63

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297

    Article  CAS  Google Scholar 

  • Duke NC (1990) Phenological trends with latitude in the mangrove tree Avicennia marina. J Ecol 78(1):113–133

    Article  Google Scholar 

  • Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, van Oosterzee P, Mackenzie J, Morning HS, Burrows D (2017) Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar Freshwater Res 68(10):1816–1829

    Article  Google Scholar 

  • Feher LC, Osland MJ, Griffith KT, Grace JB, Howard RJ, Stagg CL, Enwright NM, Kraus KW, Gabler CA, Day RH, Rogers K (2017) Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8(10):e01956

    Article  Google Scholar 

  • Félix-Pico E, Holguín-Quiñones O, Hernández-Herrera A, Flores-Verdugo F (2006) Mangrove primary production at El Conchalito Estuary in La Paz Bay (Baja California Sur, Mexico). Cienc Mar 32(1A):53–63

    Article  Google Scholar 

  • Fisheries and Aquaculture Department – FAO (2007) The world’s mangroves 1980–2005. FAO Romefos

    Google Scholar 

  • Giri CE, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke NC (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Gregory KJ, Goudie AS (2011) The Sage handbook of geomorphology. Sage, Los Angeles

    Book  Google Scholar 

  • Hadlich GM, Celino JJ, Ucha JM (2010) Diferenciação físico-química entre apicuns, manguezais e encostas na Baía de Todos os Santos, Nordeste do Brasil. Geociências 29(4):633–641

    Google Scholar 

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25(6):729–738

    Article  Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Change 8(3):240–244

    Article  CAS  Google Scholar 

  • Hamilton SE, Snedaker SC (eds) (1984) Handbook for mangrove area management. Environment and Policy Institute East-West Center, International Union for the Conservation of Nature and Natural Resources & United Nations Educational, Scientific and Cultural Organization

    Google Scholar 

  • Hernández A, Mullen K (1975) Produtividad primaria neta en un manglar del Pacífico Colombiano. In: Memorias del Seminario Sobre El Pacífico Colombiano. Universidad del Valle, Cali

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José

    Google Scholar 

  • Holmquist JR, Windham-Myers L, Bliss N, Crooks S, Morris JT, Megonigal JP, Troxler T, Weller D, Callaway J, Drexler J, Ferner MC, Gonneea ME, Kroeger KD, Schile-Beers L, Woo I, Buffington K, Breithaupt J, Boyd BM, Brown LN, Dix N, Hice L, Horton BP, MacDonald GM, Moyer RP, Reay W, Shaw T, Smith E, Smoak JM, Sommerfield C, Thorne K, Velinksy D, Watson E, Grimes KW, Woodrey M (2018) Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Sci Rep-UK 8(1):9478

    Article  Google Scholar 

  • Houze RA Jr (2004) Mesoscale convective systems. Rev Geophys 42(RG4003)

    Google Scholar 

  • Huggett RJ (1995) Geoecology: an evolutionary approach. Routledge, New York City

    Book  Google Scholar 

  • Hutchings P, Saenger P (1987) Ecology of mangroves. University of Queensland Press, St Lucia

    Google Scholar 

  • Hutchison J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7(3):233–240

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatistica – IBGE (2016) Caracterização do território: posição e extensão. In: Anuário Estatístico do Brasil, vol 1. IBGE, Rio de Janeiro

    Google Scholar 

  • Jardine SL, Siikamäki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9(10):104013

    Article  Google Scholar 

  • Lema LF, Polanía J (2007) Estructura y dinámica del manglar del delta del río Ranchería. Caribe colombiano. Rev Biol Trop 55(1):11–21

    Google Scholar 

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11(2):342–354

    Article  CAS  Google Scholar 

  • Lovelock CE, Feller IC, Reef R, Hickey S, Ball MC (2017) Mangrove dieback during fluctuating sea levels. Sci Rep-UK 7(1):1–8

    CAS  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5(1):39–64

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature, 1st edn. WH Freeman, New York City

    Google Scholar 

  • Munk W, Dzieciuch M, Jayne S (2002) Millennial climate variability: is there a tidal connection? J Clim 15:370–385

    Article  Google Scholar 

  • Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. AMS J Clim 16:1456–1475

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  Google Scholar 

  • Odum WE (1970) Pathways of energy flow in a South Florida Estuary. PhD dissertation, University of Miami

    Google Scholar 

  • Odum WE, Heald EJ (1975) Mangrove forests and aquatic productivity. In: An introduction to land-water interactions. Springer, Berlin/Heidelberg, pp 129–136

    Google Scholar 

  • Odum WE, McIvor CC, Smith TJ III (1982) The ecology of the mangroves of South Florida: a community profile. US Fish and Wildlife Service – Office of Biological Services, Washington, DC

    Google Scholar 

  • Osland MJ, Enwright NM, Day RH, Gabler CA, Stagg CL, Grace JB (2016) Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob Change Biol 22:1–11

    Article  Google Scholar 

  • Osland MJ, Gabler CA, Grace JB, Day RH, McCoy ML, McLeod JL, From AS, Enwright NM, Feher LC, Stagg CL, Hartley SB (2018) Climate and plant control on soil organic matter in coastal wetlands. Glob Change Biol 24(11):5361–5379

    Article  Google Scholar 

  • Patterson T, Kelso NV (2018) Natural earth. https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-rivers-lake-centerlines/

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 5:439–473

    Google Scholar 

  • Pool DJ, Lugo AE, Snedaker SC (1975) Litter production in mangrove forests of southern Florida and Puerto Rico. In: Proceedings of the international symposium on biology and management of mangroves, Honolulu, 8–11 October 1974

    Google Scholar 

  • Ribeiro RA, Rovai AS, Twilley RR, Castañeda-Moya E (2019) Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10(8):e02841

    Article  Google Scholar 

  • Robertson AW, Mechoso CR, Ropelewski CF, Grimm AM (2005) The American monsoon systems. In: Chang C-P, Wang B, Lau N-CG (eds) The global monsoon system: research and forecast. Secretariat of the World Meteorological Organization, Geneva, pp 197–206

    Google Scholar 

  • Rovai AS, Riul P, Twilley RR, Castañeda-Moya E, Rivera-Monroy VH, Williams AA, Simard M, Cifuentes-Jara M, Lewis RR, Crooks S, Horta PA, Schaeffer-Novelli Y, Cintrón G, Pozo-Cajas PPR (2016) Scaling mangrove aboveground biomass from site-level to continental-scale. Glob Ecol Biogeogr 25(3):286–298

    Article  Google Scholar 

  • Rovai AS, Twilley RR, Castañeda-Moya E, Riul P, Cifuentes-Jara M, Manrow-Villalobos M, Horta PA, Simonassi JC, Fonseca AL, Pagliosa PR (2018) Global controls on carbon storage in mangrove soils. Nat Clim Change 8(6):534–538

    Article  CAS  Google Scholar 

  • Rowe JS (1961) The level-of-integration concept and ecology. Ecology 42(2):420–427

    Article  Google Scholar 

  • Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96(3):293–299

    Article  Google Scholar 

  • Schaeffer-Novelli Y (1999) Situação atual do grupo de ecossistemas: manguezal, marisma e apicum, incluindo os principais vetores de pressão e as perspectivas para sua conservação e usos sustentável. Avaliação e ações prioritárias para a conservação da biodiversidade da zona costeira e marinha. Projeto de Conservação e Utilização Sustentável da Diversidade Biológica Brasileira – PROBIO. Report BDT_mangue-1999

    Google Scholar 

  • Schaeffer-Novelli Y, Cintrón-Molero G, Adaime RR, Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian coast. Estuaries 13(2):204–218

    Article  Google Scholar 

  • Schaeffer-Novelli Y, Soriano-Sierra EJ, Vale CC, Bernini E, Rovai AS, Pinheiro MAA, Schmidt AJ, Almeida R, Coelho-Jr C, Menghini RP, Martinez DI, Abuchahla GMO, Cunha-Lignon M, Charlier-Sarubo S, Shirazawa-Freitas J, Cintrón-Molero G (2016) Climate changes in mangrove forests and salt marshes. Braz J Oceanogr 64(sp2):37–52

    Article  Google Scholar 

  • Simon HA (1962) The architecture of complexity. Proc Am Phils Soc 106(6):467–482

    Google Scholar 

  • Soares MLG, Estrada GCD, Fernandez V, Tognella MMP (2012) Southern limit of the Western South Atlantic mangroves: assessment of the potential effects of global warming from a biogeographical perspective. Estuar Coast Shelf S 101:44–53

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) The world Atlas of mangroves. Earthscan, London

    Book  Google Scholar 

  • Thom BG (1982) Mangrove ecology – a geomorphological perspective. In: Clough BF (ed) Mangrove ecosystems in Australia: structure, function and management. Australian National University Press, Canberra, pp 3–17

    Google Scholar 

  • Title PO, Bemmels JB (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41(2):291–307

    Article  Google Scholar 

  • Turner MG (1998) Landscape ecology. In: Dodson SI, Allen TFH, Carpenter SR, Ives AR, Jeanne RL, Kichell JF, Langston NE, Turner MG (eds) Ecology. Oxford University Press, New York/Oxford, pp 77–122

    Google Scholar 

  • Twilley RR (1995) Properties of mangrove ecosystems related to the energy signature of coastal environments. In: Hall CAS (ed) Maximum power: the ideas and applications of H. T. Odum. University Press of Colorado, Denver, pp 43–62

    Google Scholar 

  • Twilley RR, Rivera-Monroy VH (2009) Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier BV, Dordrecht, pp 641–683

    Google Scholar 

  • Twilley RR, Lugo AE, Patterson-Zucca C (1986) Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67(3):670–683

    Article  Google Scholar 

  • Twilley RR, Chen R, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Poll 64:265–288

    Article  CAS  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas river estuary, Ecuador. Oecologia 111(1):109–122

    Article  Google Scholar 

  • Twilley RR, Rovai AS, Riul P (2018) Coastal morphology explains global blue carbon distributions. Front Ecol Environ 16(9):1–6

    Article  Google Scholar 

  • Vestbo S, Obst M, Fernandez FJQ, Intanai I, Funch P (2018) Present and potential future distributions of Asian Horseshoe crabs determine areas for conservation. Front Mar Sci 5:164

    Article  Google Scholar 

  • Walsh GE (1974) Mangroves: a review. In: Reimhold RJ, Queen WH (eds) Ecology of halophytes. Academic, New York, pp 51–174

    Chapter  Google Scholar 

  • Wolanski E, Mazda Y, Ridd P (1992) Mangrove hydrodynamics. In: Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 43–62

    Chapter  Google Scholar 

  • Woodroffe CD (1992) Mangrove sediments and geomorphology. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 7–41

    Chapter  Google Scholar 

  • Woodroffe CD (2002) Coasts: form, process and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ximenes AC, Ponsoni L, Lira CF, Koedam N, Dahdouh-Guebas F (2018) Does sea surface temperature contribute to determining range limits and expansion of mangroves in Eastern South America (Brazil)? Remote Sens-Basel 10:1787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Map 1

Amapá State, Brazil: Mangrove, salt flat, and salt marsh areas. (Sources indicated in the legend) (DOCX 1609 kb)

Map 2

Coastline of Pará State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1239 kb)

Map 3

Coastline of Maranhão State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1984 kb)

Map 4

Coastline of Piauí State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1118 kb)

Map 5

Coastline of Ceará State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1740 kb)

Map 6

Coastline of Rio Grande do Norte State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1413 kb)

Map 7

Coastline of Paraíba State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1366 kb)

Map 8

Coastline of Pernambuco State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1623 kb)

Map 9

Coastline of Alagoas State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1524 kb)

Map 10

Coastline of Sergipe State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1634 kb)

Map 11

Coastline of Bahia State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 2064 kb)

Map 12

Coastline of Espírito Santo State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 2067 kb)

Map 13

Coastline of Rio de Janeiro State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 2031 kb)

Map 14

Coastline of São Paulo State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1704 kb)

Map 15

Coastline of Paraná State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1889 kb)

Map 16

Coastline of Santa Catarina State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 1868 kb)

Map 17

Coastline of Rio Grande do Sul State, Brazil: Mangrove, salt flat, and salt marsh areas (DOCX 2130 kb)

Map 18

Fernando de Noronha, Pernambuco State, Brazil: Sueste mangrove forest indicated in green (DOCX 192 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cintrón-Molero, G. et al. (2023). Variability of Mangroves Along the Brazilian Coast: Revisiting. In: Schaeffer-Novelli, Y., Abuchahla, G.M.d.O., Cintrón-Molero, G. (eds) Brazilian Mangroves and Salt Marshes. Brazilian Marine Biodiversity . Springer, Cham. https://doi.org/10.1007/978-3-031-13486-9_3

Download citation

Publish with us

Policies and ethics