Skip to main content

Water: How Secure Are We Under Climate Change?

  • Chapter
  • First Online:
Book cover Sustainability of Water Resources

Part of the book series: Water Science and Technology Library ((WSTL,volume 116))

  • 349 Accesses

Abstract

Emphasizing the role of water in human and ecosystem sustainability, this study defines water security and its associated aspects. It then reflects on the availability of water, water supply, water demand, and water consumption. The question of water scarcity and crisis around the world is addressed next. What are the causes of water scarcity if it exists and how can it be ameliorated? How does climate change impact water scarcity? These are critical issues that need urgent attention, for their importance transcends scientific and engineering boundaries and directly affects the society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alazmi H, Mitchell G, Trigg MA (2022) Investigating water conservation strategies in Kuwait: a micro-component backcasting approach. Riyadh, Kingdom of Saudi Arabia

    Google Scholar 

  • Ali B (2018) The cost of conserved water for coal power generation with carbon capture and storage in Alberta, Canada. Energ Convers Manage 158:387–399

    Google Scholar 

  • Allan JV, Kenway SJ, Head BW (2018) Urban water security-what does it mean? Urban Water J 15(9):899–910

    CAS  Google Scholar 

  • Allan T (1993) Fortunately there are substitutes for water—Otherwise our hydropolitical futures would-be impossible. In: Proceedings of the conference on priorities for water resources allocation and management, pp 13–26

    Google Scholar 

  • Araujo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313(5792):1396–1397

    CAS  Google Scholar 

  • Assouline S (2019) A simple method to design irrigation rate and duration and improve water use efficiency. Water Resour Res 55(7):6295–6301

    ADS  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Google Scholar 

  • Biswas AK, Tortajada C (2021) Water Management International Pte Ltd., Singapore

    Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. Npj Clean Water 2

    Google Scholar 

  • Chandel MK, Pratson LF, Jackson RB (2011) The potential impacts of climate-change policy on freshwater use in thermoelectric power generation. Energ Policy 39(10):6234–6242

    Google Scholar 

  • Cook C, Bakker K (2012) Water security: debating an emerging paradigm. Global Environ Chang 22(1):94–102

    Google Scholar 

  • Cook ER, Solomina O, Matskovsky V, Cook BI, Agafonov L, Berdnikova A, Dolgova E, Karpukhin A, Knysh N, Kulakova M, Kuznetsova V, Kyncl T, Kyncl J, Maximova O, Panyushkina I, Seim A, Tishin D, Dotny TWO, Yermokhin M (2020) The European Russia Drought Atlas (1400–2016 CE). Clim Dyn 54(3–4):2317–2335

    Google Scholar 

  • Cuartas LA, Cunha APMD, Alves JA, Parra LMP, Deusdara-Leal K, Costa LCO, Molina RD, Amore D, Broedel E, Seluchi ME, Cunningham C, Alvala RCD, Marengo JA (2022) Recent hydrological droughts in Brazil and their impact on hydropower generation. Water-Sui 14(4)

    Google Scholar 

  • Cunha APMA, Zeri M, Leal KD, Costa L, Cuartas LA, Marengo JA, Tomasella J, Vieira RM, Barbosa AA, Cunningham C, Garcia JVC, Broedel E, Alvala R, Ribeiro-Neto G (2019) Extreme drought events over Brazil from 2011 to 2019. Atmos-Basel 10(11)

    Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshwater Res 65(10):934–941

    Google Scholar 

  • Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, Lovelace JK, Barber NL, Linsey KS (2018) Estimated use of water in the United States in 2015: U.S. Geological Survey Circular 1441, 65p. https://doi.org/10.3133/cir1441

  • Elliott J, Deryng D, Mueller C, Frieler K, Konzmann M, Gerten D, Glotter M, Florke M, Wada Y, Best N, Eisner S, Fekete BM, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang QH, Wisser D (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. P Natl Acad Sci USA 111(9):3239–3244

    ADS  CAS  Google Scholar 

  • FAO (2018) The future of food and agriculture—Alternative pathways to 2050. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2011) Global food losses and food waste—Extent, causes and prevention, Rome

    Google Scholar 

  • FAO (2021) FAOSTAT database. www.fao.org/faostat/en/#data

  • FAO, AQUASTAT (2016) AQUASTAT database. Food and agriculture organization of the United Nations. https://www.fao.org/aquastat/statistics/query/index.html?lang=en

  • Fitzmaurice M (2021) Biodiversity and climate change. Int Community Law Re 23(2–3):230–240

    Google Scholar 

  • Fukase E, Martin W (2020) Economic growth, convergence, and world food demand and supply. World Dev 132

    Google Scholar 

  • Gerlak AK, House-Peters L, Varady RG, Albrecht T, Zuniga-Teran A, de Grenade RR, Cook C, Scott CA (2018) Water security: a review of place-based research. Environ Sci Policy 82:79–89

    Google Scholar 

  • Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

    ADS  Google Scholar 

  • Griffis FH (2007) Engineering failures exposed by Hurricane Katrina. Technol Soc 29(2):189–195

    Google Scholar 

  • Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, Babu S, Borrelli P, Cheng L, Crochetiere H, Macedo HE, Filgueiras R, Goichot M, Higgins J, Hogan Z, Lip B, McClain ME, Meng J, Mulligan M, Nilsson C, Olden JD, Opperman JJ, Petry P, Liermann CR, Saenz L, Salinas-Rodriguez S, Schelle P, Schmitt RJP, Snider J, Tan F, Tockner K, Valdujo PH, van Soesbergen A, Zarfl C (2019) Mapping the world's free-flowing rivers. Nature 569(7755):215

    Google Scholar 

  • Haddeland I, Heinke J, Biemans H, Eisner S, Florke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler ZD, Wada Y, Wisser D (2014) Global water resources affected by human interventions and climate change. P Natl Acad Sci USA 111(9):3251–3256

    ADS  CAS  Google Scholar 

  • Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dynam 4(1):129–144

    ADS  Google Scholar 

  • He XG, Pan M, Wei ZW, Wood EF, Sheffield J (2020) A global drought and flood catalogue from 1950 to 2016. B Am Meteorol Soc 101(5):E508–E535

    ADS  Google Scholar 

  • Heinke J, Muller C, Lannerstad M, Gerten D, Lucht W (2019) Freshwater resources under success and failure of the Paris climate agreement. Earth Syst Dynam 10(2):205–217

    ADS  Google Scholar 

  • Ho M, Lall U, Allaire M, Devineni N, Kwon HH, Pal I, Raff D, Wegner D (2017) The future role of dams in the United States of America. Water Resour Res 53(2):982–998

    ADS  Google Scholar 

  • Howard G, Bartram J, Williams A, Overbo A, Fuente D, Geere J-A (2020) Domestic water quantity, service level and health. World Health Organization, Geneva (Switzerland)

    Google Scholar 

  • Hurlbert M, Krishnaswamy J, Davin E, Johnson FX, Mena CF, Morton J, Myeong S, Viner D, Warner K, Wreford A, Zakieldeen S, Zommers Z (2019) Risk management and decision making in relation to sustainable development. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Cambridge University Press, Cambridge.

    Google Scholar 

  • IEA (International Energy Agency) (2016) Water energy Nexus: excerpt from the world energy outlook, 2016. IEA, Publications, Paris

    Google Scholar 

  • Igor AS (1999) State Hydrological Institute and United Nation Educational, Scientific and Cultural Organization

    Google Scholar 

  • Iizumi T, Shiogama H, Imada Y, Hanasaki N, Takikawa H, Nishimori M (2018) Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. Int J Climatol 38(14):5405–5417

    Google Scholar 

  • Iizumi T, Ramankutty N (2016) Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ Res Lett 11(3)

    Google Scholar 

  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

    Google Scholar 

  • IPCC (2021) Climate change 2021: the physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. I

    Google Scholar 

  • Jasechko S, Perrone D (2021) Global groundwater wells at risk of running dry. Science 372(6540):418

    Google Scholar 

  • Jasechko S, Perrone D, Seybold H, Fan Y, Kirchner JW (2020) Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat Commun 11(1)

    Google Scholar 

  • Jia XY, Hou DY, Wang LW, O'Connor D, Luo J (2020) The development of groundwater research in the past 40 years: a burgeoning trend in groundwater depletion and sustainable management. J Hydrol 587

    Google Scholar 

  • Jin Y, Behrens P, Tukker A, Scherer L (2019) Water use of electricity technologies: a global meta-analysis. Renew Sust Energ Rev 115

    Google Scholar 

  • Kirezci E, Young IR, Ranasinghe R, Muis S, Nicholls RJ, Lincke D, Hinkel J (2020) Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci Rep-Uk 10(1)

    Google Scholar 

  • Konapala G, Mishra AK, Wada Y, Mann ME (2020) Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat Commun 11(1)

    Google Scholar 

  • Kuwayama Y, Thompson A, Bernknopf R, Zaitchik B, Vail P (2019) Estimating the impact of drought on agriculture using the us drought monitor. Am J Agr Econ 101(1):193–210

    Google Scholar 

  • Lickley M, Solomon S (2018) Drivers, timing and some impacts of global aridity change. Environ Res Lett 13(10)

    Google Scholar 

  • Liu J, Savenije HHG (2008) Food consumption patterns and their effect on water requirement in China. Hydrol Earth Syst Sc 12(3):887–898

    ADS  Google Scholar 

  • Lu L, Guest JS, Peters CA, Zhu XP, Rau GH, Ren ZJ (2018) Wastewater treatment for carbon capture and utilization. Nat Sustain 1(12):750–758

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2)

    Google Scholar 

  • Miller JD, Workman CL, Panchang SV, Sneegas G, Adams EA, Young SL, Thompson AL (2021) Water security and nutrition: current knowledge and research opportunities. Adv Nutr 12(6):2525–2539

    Google Scholar 

  • Min S, Bai JF, Seale J, Wahl T (2015) Demographics, societal aging, and meat consumption in China. J Integr Agr 14(6):995–1007

    Google Scholar 

  • Mishra V, Tiwari AD, Aadhar S, Shah R, Xiao M, Pai DS, Lettenmaier D (2019) Drought and Famine in India, 1870–2016. Geophys Res Lett 46(4):2075–2083

    ADS  Google Scholar 

  • Patz JA, Olson SH (2006) Climate change and health: global to local influences on disease risk. Ann Trop Med Parasit 100(5–6):535–549

    CAS  Google Scholar 

  • Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    ADS  CAS  Google Scholar 

  • Portmann FT, Doll P, Eisner S, Florke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8(2)

    Google Scholar 

  • Rippey BR (2015) The U.S. drought of 2012. Weather Clim Extreme 10:57–64

    Google Scholar 

  • Sahagian DL, Schwartz FW, Jacobs DK (1994) Direct anthropogenic contributions to sea-level rise in the 20th-century. Nature 367(6458):54–57

    ADS  Google Scholar 

  • Sarwar A, Peters RT, Mehanna H, Amini MZ, Mohamed AZ (2019) Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions. Agr Water Manage 221:84–91

    Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colon-Gonzalez FJ, Gosling SN, Kim H, Liu XC, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang QH, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. P Natl Acad Sci USA 111(9):3245–3250

    ADS  CAS  Google Scholar 

  • Sharma N, Mahapatra SS (2018) A preliminary analysis of increase in water use with carbon capture and storage for Indian coal-fired power plants. Environ Technol Inno 9:51–62

    Google Scholar 

  • Singh VP (2017) Challenges in meeting water security and resilience. Water Int 42(4):349–359

    Google Scholar 

  • Spang ES, Moomaw WR, Gallagher KS, Kirshen PH Marks DH (2014) The water consumption of energy production: an international comparison. Environ Res Lett 9(10)

    Google Scholar 

  • Stenzel F, Greve P, Lucht W, Tramberend S, Wada Y, Gerten D (2021) Irrigation of biomass plantations may globally increase water stress more than climate change. Nat Commun 12(1)

    Google Scholar 

  • Talati S, Zhai HB, Kyle GP, Morgan MG, Patel P, Liu L (2016) Consumptive water use from electricity generation in the Southwest under alternative climate, technology, and policy futures. Environ Sci Technol 50(22):12095–12104

    ADS  CAS  Google Scholar 

  • Tian F, Wu JJ, Liu LZ, Leng S, Yang JH, Zhao WH Shen Q (2020) Exceptional drought across Southeastern Australia caused by extreme lack of precipitation and its impacts on NDVI and SIF in 2018. Remote Sens-Basel 12(1)

    Google Scholar 

  • United Nations (2015) UN water. Wastewater management-A UN-water analytical brief 1–52, World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  • Vachaud G, Quertamp F, Ha PTS, Dung TNT, Thong N, Loc LX, Tuan NA, Gratiot N (2019) Flood-related risks in Ho Chi Minh City and ways of mitigation. J Hydrol 573:1021–1027

    Google Scholar 

  • van Dijk AIJM, Beck HE, Crosbie RS, de Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057

    ADS  Google Scholar 

  • van Dijk M, Morley T, Rau ML, Saghai Y (2021) A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat Food 2(7):494

    Google Scholar 

  • van Ruijven BJ, De Cian E, Wing IS (2019) Amplification of future energy demand growth due to climate change. Nat Commun 10

    Google Scholar 

  • Wada Y, Florke M, Hanasaki N, Eisner S, Fischer G, Tramberend S, Satoh Y, van Vliet MTH, Yillia P, Ringler C, Burek P, Wiberg D (2016) Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches. Geosci Model Dev 9(1):175–222

    ADS  Google Scholar 

  • Water Footprint Network (2022). https://waterfootprint.org/en/resources/interactive-tools/product-gallery/

  • World Water Council (2000) Ministerial declaration of the Hague on water security in the 21st century. World Water Council: Hague, The Netherlands

    Google Scholar 

  • Xiao M, Udall B, Lettenmaier DP (2018) On the causes of declining Colorado River streamflows. Water Resour Res 54(9):6739–6756

    ADS  Google Scholar 

  • Yao N, Li Y, Lei TJ, Peng LL (2018) Drought evolution, severity and trends in mainland China over 1961–2013. Sci Total Environ 616:73–89

    ADS  Google Scholar 

  • Zhu XY, Peters T, Neibling H (2016) Hydraulic performance assessment of Lesa at low pressure. Irrig Drain 65(4):530–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V.P., Su, Q. (2022). Water: How Secure Are We Under Climate Change?. In: Yadav, B., Mohanty, M.P., Pandey, A., Singh, V.P., Singh, R.D. (eds) Sustainability of Water Resources. Water Science and Technology Library, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-031-13467-8_1

Download citation

Publish with us

Policies and ethics