Skip to main content

Theory of Disease

  • Chapter
  • First Online:
Naturopathic Medicine
  • 327 Accesses

Abstract

While disease is an observable phenomenon at the cellular and biochemical level, the reasons that the human system lapses into disease and dysfunctions are more complex than the end-stage pathological finding. This chapter looks at how these dysfunctions occur over time, as this is the ground of chronic ill health of the kind that patients seek help for. Alterations to normal function precede the degenerative changes that lead to chronic disease. These alterations can certainly present with symptoms, sometimes drastic, but they have the potential to be reversed. Allopathic medications sometimes work effectively in dampening these alterations. But if the disturbances that caused abnormal function are left unaddressed, it is likely that more aggressive treatment will be needed and that degenerative changes will occur. Examples discussed in this chapter include disorganization of normal regulatory feedback loops, breakdown and stiffening of the extracellular matrix, depletion of stem cell reserves, mitochondrial dysfunction, attenuation of pro-survival responses to stimuli and stressors, degradation of the proteome, and neoplasia-uncontrolled growth and differentiation. The chapters that follow will examine the etiological causes of these breakdowns and their relation to disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franco E, Galloway KE. Feedback loops in biological networks. Methods Mol Biol. 2015;1244:193–214.

    Article  CAS  PubMed  Google Scholar 

  2. Smith A, Bianchi A, Kuestermann K, O’Byrne A, Van Brandt B. Introduction to bioregulatory medicine. Stuttgart: Thieme; 2009.

    Google Scholar 

  3. Gonze D, Ruoff P. The Goodwin oscillator and its legacy. Acta Biotheor. 2020;69:857.

    Article  PubMed  Google Scholar 

  4. Stiles PJ, Gray CG. Improved Hodgkin-Huxley type model for neural action potentials. Eur Biophys J. 2021;50(6):819–28.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchini F, Cuba Samaniego C, Franco E, Giordano G. Homogeneous time constants promote oscillations in negative feedback loops. ACS Synth Biol. 2018;7(6):1481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ananthasubramaniam B, Herzel H. Positive feedback promotes oscillations in negative feedback loops. PLoS One. 2014;9(8):e104761.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gjerstad JK, Lightman SL, Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress. 2018;21(5):403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol. 2017;595(24):7275–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies KJA. Adaptive homeostasis. Mol Asp Med. 2016;49:1–7. https://pubmed.ncbi.nlm.nih.gov/27112802.

    Article  Google Scholar 

  10. Lauzon RJ, Ishizuka KJ, Weissman IL. Cyclical generation and degeneration of organs in a colonial urochordate involves crosstalk between old and new: a model for development and regeneration. Dev Biol. 2002;249(2):333–48.

    Article  CAS  PubMed  Google Scholar 

  11. Abedi F, Rezaee R, Hayes AW, Nasiripour S, Karimi G. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle. 2021;20(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  12. Ac IAH, Histology M. Matrix Histol Physiol. 2007:1–55.

    Google Scholar 

  13. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23(8 Suppl 1):S20–3. https://pubmed.ncbi.nlm.nih.gov/25275899.

    Article  PubMed  Google Scholar 

  14. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R, et al. The extracellular matrix: an accomplice in gastric cancer development and progression. Cells. 2020;9(2):394.

    Article  CAS  PubMed Central  Google Scholar 

  16. Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey. Dev Cell. 2019;49(3):332–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filipe EC, Chitty JL, Cox TR. Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol. 2018;99(2):58–76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mohanraj K, Nowicka U, Chacinska A. Mitochondrial control of cellular protein homeostasis. Biochem J. 2020;477(16):3033–54.

    Article  CAS  PubMed  Google Scholar 

  19. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis. 2017;1863(5):1066–77.

    Article  CAS  PubMed  Google Scholar 

  20. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344. https://pubmed.ncbi.nlm.nih.gov/30072092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017;391:42–53.

    Article  CAS  PubMed  Google Scholar 

  23. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. https://pubmed.ncbi.nlm.nih.gov/21726199.

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim Biophys Acta Bioenerg. 2017;1858(8):602–14.

    Article  CAS  PubMed  Google Scholar 

  25. Calabrese EJ. Hormesis and stem cells enhancing cell proliferation, differentiation and resilience to inflammatory stress in bone marrow stem cells and their therapeutic implications. Chem Biol Interact. 2021;351:109730. https://doi.org/10.1016/j.cbi.2021.109730.

    Article  CAS  PubMed  Google Scholar 

  26. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19–34.

    Article  PubMed  Google Scholar 

  27. Brundel BJJM. The role of proteostasis derailment in cardiac diseases. Cells. 2020;9(10):2317. https://pubmed.ncbi.nlm.nih.gov/33086474.

    Article  PubMed Central  Google Scholar 

  28. Roth DM, Balch WE. Modeling general proteostasis: proteome balance in health and disease. Curr Opin Cell Biol. 2011;23(2):126–34.

    Article  CAS  PubMed  Google Scholar 

  29. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132(21):4653–62.

    Article  CAS  PubMed  Google Scholar 

  31. Ge H, Tian M, Pei Q, Tan F, Pei H. Extracellular matrix stiffness: new areas affecting cell metabolism. Front Oncol. 2021;11:631991. https://pubmed.ncbi.nlm.nih.gov/33718214.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286(15):2830–69.

    Article  CAS  PubMed  Google Scholar 

  33. Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol basis Dis. 2020;1866(10):165845.

    Article  CAS  PubMed  Google Scholar 

  34. Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta Mol basis Dis. 2017;1863(5):1098–105.

    Article  CAS  PubMed  Google Scholar 

  35. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12):a005058. https://pubmed.ncbi.nlm.nih.gov/21917992.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, et al. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes. 1992;41(Suppl 2):36–41.

    Article  CAS  PubMed  Google Scholar 

  37. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J. 2017;50(1):1601805. http://erj.ersjournals.com/content/50/1/1601805.abstract.

    Article  PubMed  Google Scholar 

  38. Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Walker C, Mojares E, Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression. Int J Mol Sci. 2018;19(10):3028.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser Smith .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, F. (2022). Theory of Disease. In: Naturopathic Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-13388-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13388-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13387-9

  • Online ISBN: 978-3-031-13388-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics