Skip to main content

Coherence, Classical Correlations, and their Invariances

  • Chapter
  • First Online:
Coherence

Abstract

This chapter proceeds from a discussion of scalar-valued coherence to multiple coherence to matrix-valued coherence. Connections are established with principal angles and with canonical correlations. The study of factorizations of two-channel covariance matrices leads to filtering formulas for MMSE filters and their error covariances. When covariance matrices are estimated from measurements, then the filter and error covariance are random matrices. Their distribution is given. The multistage Wiener filter (MSWF), a conjugate gradient algorithm, is reviewed as a way to recursively update the order of the MMSE filter. Beamforming is offered as an illustration of these ideas. Half- and full-canonical coordinates are shown to be the correct bases for model order reduction. When three channels are admitted into the discussion, then the theory of partial coherence arises as a way to quantify the efficacy of a third channel when solving regression problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the original, and influential, work of Goldstein and Reed, this was termed the multistage Wiener filter [140].

References

  1. S. Ashrafulla, J.P. Haldar, A.A. Joshi, R.M. Leahy, Canonical Granger causality between regions of interest. NeuroImage 83, 189–199 (2013)

    Article  Google Scholar 

  2. L. Barnett, A.B. Barrett, A.K. Seth, Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701 (2009)

    Article  Google Scholar 

  3. L. Barnett, A.K. Seth, Granger causality for state-space models. Phys. Rev. E 91, 040101 (2015)

    Article  MathSciNet  Google Scholar 

  4. J. Benesty, J. Chen, Y. Huang, Estimation of the coherence function with the MVDR approach, in IEEE International Conference on Acoustics, Speech, and Signal Processing (2006), pp. 500–503

    Google Scholar 

  5. G.C. Carter, Coherence and time delay estimation. Proc. IEEE 75, 236–255 (1987)

    Article  Google Scholar 

  6. G.C. Carter, A.H. Nuttall, P.G. Cable, The smoothed coherence transform. Proc. IEEE 61, 1497–1498 (1973)

    Article  Google Scholar 

  7. H. Cox, Resolving power and sensitivity to mismatch of optimum array processors. Acoust. Soc. Amer. J. 54(3), 771 (1973)

    Google Scholar 

  8. H. Cox, R. Zeskind, M. Owen, Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 35(10), 1365–1376 (1987)

    Article  Google Scholar 

  9. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1946)

    MATH  Google Scholar 

  10. G. Dietl, W. Utschick, On reduced-rank approaches to matrix Wiener filters in MIMO systems, in IEEE International Symposium on Signal Processing and Information Technology (2003), pp. 82–85

    Google Scholar 

  11. R.A. Dobie, Analysis of auditory evoked potentials by magnitude squared coherence. Ear Hear. 10(1), 2–13 (1989)

    Article  Google Scholar 

  12. M.L. Eaton, On the projection of isotropic distributions. Ann. Statist. 9(2), 391–400 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.L. Eaton, Multivariate Statistics Institute of Mathematical Statistics (1983)

    Google Scholar 

  14. R.A. Fisher, The general sampling distribution of the multiple correlation coefficient. Proc. R. Soc. Lond. 121, 654–673 (1928)

    MATH  Google Scholar 

  15. J. Geweke, Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77(378), 304–313 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Geweke, Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 79(388), 907–915 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.S. Goldstein, I.S. Reed, Reduced-rank adaptive filtering. IEEE Trans. Signal Process. 45(2), 492–496 (1997)

    Article  Google Scholar 

  18. J.S. Goldstein, I.S. Reed, L.L. Scharf, A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. Inf. Theory 44(7), 2943–2949 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  MATH  Google Scholar 

  20. M.R. Hestenes, E. Stielfel, Methods of conjugate gradient for solving linear systems. J. Res. Nat. Bureau Standards 49(6), 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  21. H. Hotelling, Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  MATH  Google Scholar 

  22. Y. Hua, M. Nikpour, P. Stoica, Optimal reduced-rank estimation and filtering. IEEE Trans. Signal Process. 49(3), 457–469 (2001)

    Article  Google Scholar 

  23. A.T. James, Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35(2), 475–501 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.G. Khatri, C.R. Rao, Effects of estimated noise covariance matrix in optimal signal detection. IEEE Trans. Acoust. Speech Signal Process. 35(5), 671–679 (1987)

    Article  Google Scholar 

  25. A.N. Kshirsagar, Multivariate Analysis (Dekker, New York, 1972)

    MATH  Google Scholar 

  26. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Application (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  27. R.J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, Hoboken, 2005)

    MATH  Google Scholar 

  28. A.H. Nuttall, Invariance of distribution of coherence estimate to second-channel statistics. IEEE Trans. Acoust. Speech Signal Process. 29(1), 120–122 (1981)

    Article  Google Scholar 

  29. P.W. Otter, On Wiener-Granger causality, information and canonical correlation. Econ. Lett. 35, 187–191 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. I.S. Reed, J.D. Mallet, L.E. Brennan, Rapid convergence rate in adaptive arrays. IEEE Trans. Aero. Electr. Syst. 10(6), 1760–1770 (1974)

    Google Scholar 

  31. I. Santamaria, J. Vía, Estimation of the magnitude squared coherence spectrum based on reduced-rank canonical coordinates, in IEEE International Conference on Acoustics, Speech, and Signal Processing (2007)

    Google Scholar 

  32. L.L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis (Addison-Wesley, Boston, 1991)

    MATH  Google Scholar 

  33. L.L. Scharf, C.T. Mullis, Canonical coordinates and the geometry of inference, rate, and capacity. IEEE Trans. Signal Process. 48(3), 824–831 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. L.L. Scharf, Y. Wang, Testing for causality using a partial coherence statistic (2021). arXiv:2112.03987v1

    Google Scholar 

  35. L.L. Scharf, E.K.P. Chong, J.S. Goldstein, M.D. Zoltowski, I.S. Reed, Subspace expansion and the equivalence between conjugate direction and multistage Wiener filters. IEEE Trans. Signal Process. 56(10), 5013–5019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.J. Schreier, A unifying discussion of correlation analysis for complex random vectors. IEEE Trans. Signal Process. 56(4), 1327–1336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.C. Shaw, Correlation and coherence analysis of the EEG: a selective tutorial review. Int. J. Psychophysiol. 1(3), 255–266 (1984)

    Article  Google Scholar 

  38. P. Stoica, M. Viberg, Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions. IEEE Trans. Signal Process. 44(12), 3069–3078 (1996)

    Article  Google Scholar 

  39. H.L. Van Trees, Detection, Estimation and Modulation Theory: Optimum Array Processing (Part IV) (Wiley, Hoboken, 2002)

    Google Scholar 

  40. B.D. Van Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  Google Scholar 

  41. M.E. Weippert, J.D. Hiemstra, J.S. Goldstein, M.D. Zoltowski, Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients, in Sensor Array and Multichannel Signal Processing Workshop (2002), pp. 388–392

    Google Scholar 

  42. J. Whittaker, Graphical Models in Applied Multivariate Statistics (Wiley, Hoboken, 1946)

    MATH  Google Scholar 

  43. G.R. Wu, F. Chen, D. Kang, X. Zhang, D. Marinazzo, H. Chen, Multiscale causal connectivity analysis by canonical correlation: theory and application to epileptic brain. IEEE Trans. Biomed. Eng. 58(11), 3088–3096 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez, D., Santamaría, I., Scharf, L. (2022). Coherence, Classical Correlations, and their Invariances. In: Coherence. Springer, Cham. https://doi.org/10.1007/978-3-031-13331-2_3

Download citation

Publish with us

Policies and ethics