Skip to main content

UniToBrain Dataset: A Brain Perfusion Dataset

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Abstract

The CT perfusion (CTP) is a medical exam for measuring the passage of a bolus of contrast solution through the brain on a pixel-by-pixel basis. The objective is to draw “perfusion maps” (namely cerebral blood volume, cerebral blood flow and time to peak) very rapidly for ischemic lesions, and to be able to distinguish between core and penumbra regions. A precise and quick diagnosis, in a context of ischemic stroke, can determine the fate of the brain tissues and guide the intervention and treatment in emergency conditions.

In this work we present UniToBrain dataset, the very first open-source dataset for CTP. It comprises a cohort of more than a hundred of patients, and it is accompanied by patients metadata and ground truth maps obtained with state-of-the-art algorithms. We also propose a novel neural networks-based algorithm, using the European library ECVL and EDDL for the image processing and developing deep learning models respectively. The results obtained by the neural network models match the ground truth and open the road towards potential sub-sampling of the required number of CT maps, which impose heavy radiation doses to the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, G.W., et al.: Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. New Engl. J. Med. 378(8), 708–718 (2018). https://doi.org/10.1056/nejmoa1713973

    Article  Google Scholar 

  2. Aldinucci, M., et al.: Hpc4ai: an AI-on-demand federated platform Endeavour. In: Proceedings of the 15th ACM International Conference on Computing Frontiers. CF 2018, New York, NY, USA, pp. 279–286. Association for Computing Machinery (2018). https://doi.org/10.1145/3203217.3205340

  3. Barbano, C.A., et al.: Unitopatho, a labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading. In: 2021 IEEE International Conference on Image Processing (ICIP). pp. 76–80 (2021). https://doi.org/10.1109/ICIP42928.2021.9506198

  4. Bennink, E., Oosterbroek, J., Kudo, K., Viergever, M.A., Velthuis, B.K., de Jong, H.W.A.M.: Fast nonlinear regression method for CT brain perfusion analysis. J. Med. Imaging 3(2) (2016). https://doi.org/10.1117/1.jmi.3.2.026003

  5. Campbell, B.C., et al.: Imaging selection in ischemic stroke: feasibility of automated CT-perfusion analysis. Int. J. Stroke 10(1), 51–54 (2014). https://doi.org/10.1111/ijs.12381

    Article  Google Scholar 

  6. DeepHealth: Deep-learning and HPC to boost biomedical applications for health (2019). https://deephealth-project.eu/

  7. Donahue, J., Wintermark, M.: Perfusion CT and acute stroke imaging: foundations, applications, and literature review. J. Neuroradiol. 42(1), 21–29 (2015). https://doi.org/10.1016/j.neurad.2014.11.003

    Article  Google Scholar 

  8. Falk, T., et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2018). https://doi.org/10.1038/s41592-018-0261-2

    Article  Google Scholar 

  9. Gava, U., et al.: UniToBrain (2022). https://doi.org/10.21227/x8ea-vh16

  10. Gava, U.A., et al.: Neural network-derived perfusion maps: a model-free approach to computed tomography perfusion in patients with acute ischemic stroke (2021). https://doi.org/10.1101/2021.01.13.21249757

  11. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010). https://doi.org/10.1109/tmi.2009.2035616

    Article  Google Scholar 

  12. Kudo, K., et al.: Differences in CT perfusion maps generated by different commercial software: Quantitative analysis by using identical source data of acute stroke patients. Radiology 254(1), 200–209 (2010). https://doi.org/10.1148/radiol.254082000

    Article  Google Scholar 

  13. Oniga, D., et al.: Applications of AI and HPC in health domain. In: HPC, Big Data, AI Convergence Toward Exascale: Challenge and Vision, chap. 11. CRC Press, Taylor & Francis Group (2021). ISBN: 9781032009841

    Google Scholar 

  14. Perlo, D., et al.: UniToChest (2022). https://doi.org/10.5281/zenodo.5797912

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS 2017, Red Hook, NY, USA, pp. 3859–3869. Curran Associates Inc. (2017). https://doi.org/10.5555/3294996.3295142

  17. Wannamaker, R., et al.: Computed tomographic perfusion predicts poor outcomes in a randomized trial of endovascular therapy. Stroke 49(6), 1426–1433 (2018). https://doi.org/10.1161/strokeaha.117.019806

    Article  Google Scholar 

Download references

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 825111, DeepHealth Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Tartaglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perlo, D., Tartaglione, E., Gava, U., D’Agata, F., Benninck, E., Bergui, M. (2022). UniToBrain Dataset: A Brain Perfusion Dataset. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics