Skip to main content

Print-Path Design for Inclined-Plane Robotic 3D Printing of Unreinforced Concrete

  • Conference paper
  • First Online:
Towards Radical Regeneration (DMS 2022)

Included in the following conference series:

Abstract

The paper details the computational toolkit for print-path synthesis and execution that was used in the physical realisation of an arched, bifurcating, unreinforced masonry footbridge spanning 16 m, composed of 53 3D-printed concrete blocks. The printed concrete filaments of every block were placed in layers that are orthogonal to the expected, compressive force flow, resulting in the need for non-parallel, inclined print-path planes, thus also resulting in non-uniform print-layer heights. In addition, the bridge’s global structural logic of stereotomic masonry necessitated the precise coordination of the interface planes be- tween blocks. Approximately 58 km of print path, distributed over 7800 inclined layers, were generated and coordinated such that the resulting print paths meet printing-related criteria such as good spatial coherence, minimum and maximum layer thickness, infill patterns etc. We describe a schema based on Function Representation (FRep) for inclined-plane print-path generation, and its full implementation for practical and large-batch production. We also implement specific extensions to generate the infill print paths typically needed in 3D concrete printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khoshnevis, B.: Automated construction by contour crafting-related robotics and information technologies. Autom. Constr. 13(1), 5–19 (2004)

    Article  Google Scholar 

  2. Bhooshan, S., Ladinig, J., Van Mele, T., Block, P.: Function representation for robotic 3D printed concrete. In: Willmann, J., Block, P., Hutter, M., Byrne, K., Schork, T. (eds.) Robotic Fabrication in Architecture, Art and Design, pp. 98–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92294-2_8

    Chapter  Google Scholar 

  3. Carneau, P., Mesnil, R., Roussel, N., Baverel, O.: An exploration of 3D printing design space inspired by masonry. In: Proceedings of IASS Annual Symposia, no. 6, pp. 1–9. International Association for Shell and Spatial Structures (IASS) (2019)

    Google Scholar 

  4. Bhooshan, S., Van Mele, T., Block, P.: Morph & Slerp: shape description for 3D printing of concrete. In: Symposium on Computational Fabrication, pp. 1–10 (2020)

    Google Scholar 

  5. Block, P., Van Mele, T., Rippmann, M., Ranaudo, F., Calvo Barentin, C.J., Paulson, N.: Redefining structural art: Strategies, necessities and opportunities. Struct. Eng. 98(1), 66–72 (2020)

    Article  Google Scholar 

  6. Ranaudo, F., Van Mele, T., Block, P.: A low-carbon, funicular concrete floor system: design and engineering of the HiLo floors. In: Proceedings of IABSE Congress 2021 (2021)

    Google Scholar 

  7. Bhooshan, S., et al: The Striatus arched bridge Computational design and robotic fabrication of an unreinforced, 3D-concrete-printed, masonry bridge. Archit. Struct. Constr. (2022, in press)

    Google Scholar 

  8. Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P.: Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Mater. Des. 100, 102–109 (2016)

    Article  Google Scholar 

  9. Bhooshan, S., Van Mele, T., Block, P.: Equilibrium-aware shape design for concrete printing. In: De Rycke, K., et al. (eds.) Humanizing Digital Reality, pp. 493–508. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6611-5_42

    Chapter  Google Scholar 

  10. Breseghello, L., Sanin, S., Naboni, R.: Toolpath simulation, design and manipulation in robotic 3D concrete printing (2021)

    Google Scholar 

  11. Motamedi, M., Oval, R., Carneau, P., Baverel, O.: Supportless 3D printing of shells: adaptation of ancient vaulting techniques to digital fabrication. In: Gengnagel, C., Baverel, O., Burry, J., Ramsgaard Thomsen, M., Weinzierl, S. (eds.) DMSB 2019, pp. 714–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29829-6_55

    Chapter  Google Scholar 

  12. Lim, S., Buswell, R.A., Valentine, P.J., Piker, D., Austin, S.A., De Kestelier, X.: Modelling curved-layered printing paths for fabricating largescale construction components. Addit. Manuf. 12, 216–230 (2016)

    Google Scholar 

  13. Anton, A., Yoo, A., Bedarf, P., Reiter, L., Wangler, T., Dillenburger, B.: Vertical modulations. In: Proceeding of ACADIA 2019 (2019)

    Google Scholar 

  14. Westerlind, H., Hernández, J.: Knitting concrete. In: Bos, F., Lucas, S., Wolfs, R., Salet, T. (eds.) DC 2020, pp. 988–997. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49916-7_96

    Chapter  Google Scholar 

  15. Zhao, H., et al.: Connected fermat spirals for layered fabrication. ACM Trans. Graph. (TOG) 35(4), 1–10 (2016)

    Google Scholar 

  16. Bi, M., et al.: Continuous contour-zigzag hybrid toolpath for large format additive manufacturing. Addit. Manuf. 55, 102822 (2022)

    Google Scholar 

  17. Anton, A., Reiter, L., Wangler, T., Frangez, V., Flatt, R.J., Dillenburger, B.: A 3D concrete printing prefabrication platform for bespoke columns. Autom. Constr. 122, 103467 (2021)

    Article  Google Scholar 

  18. SlicerXL: SLicerXL (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shajay Bhooshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhooshan, S., Bhooshan, V., Megens, J., Casucci, T., Van Mele, T., Block, P. (2023). Print-Path Design for Inclined-Plane Robotic 3D Printing of Unreinforced Concrete. In: Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J. (eds) Towards Radical Regeneration. DMS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-13249-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13249-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13248-3

  • Online ISBN: 978-3-031-13249-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics