Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubik’s Cube with Deep Reinforcement Learning and Search. Nature M. Intel. pp. 356–363 (2019)
Google Scholar
Baier, C., Christakis, M., Gros, T.P., Groß, D., Gumhold, S., Hermanns, H., Hoffmann, J., Klauck, M.: Lab conditions for research on explainable automated decisions. In: TAILOR 2020. pp. 83–90 (2020)
Google Scholar
Bard, N., et al.: The hanabi challenge: A new frontier for ai research. Artificial Intelligence 280, 103216 (2020)
MathSciNet
MATH
CrossRef
Google Scholar
Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic programming. Artificial Intelligence 72(1), 81–138 (1995)
CrossRef
Google Scholar
Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical Abstraction and Model-Checking of Large Heterogeneous Systems. In: FORTE 2010. vol. 6117, pp. 32–46. Springer (2010)
Google Scholar
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An evaluation platform for general agents. JAIR 47, 253–279 (2013)
CrossRef
Google Scholar
Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial order methods for statistical model checking and simulation. In: FORTE 2011. vol. 6722, pp. 59–74. Springer (2011)
Google Scholar
Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model Checking for Modestly Nondeterministic Models. In: GI/ITG Conf. Measurement, Modelling, and Eval. Comp. Sys. Depend. Fault Tol. pp. 249–252. Springer (2012)
Google Scholar
Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time dynamic programming. In: ICAPS. pp. 12–21 (2003)
Google Scholar
Bonet, B., Givan, B.: Non-Deterministic Planning Track of the 2006 IPC. http://idm-lab.org/wiki/icaps/ipc2006/probabilistic/ (2006), acc. Oct., 13, 2021
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai gym. CoRR abs/1606.01540 (2016)
Google Scholar
Browne, C.B., et al.: A survey of monte carlo tree search methods. IEEE Trans. Comp. Intel. and AI in Games 4(1), 1–43 (2012)
Google Scholar
Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: TACAS. pp. 340–358 (2018)
Google Scholar
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: Quantitative model and tool interaction. In: TACAS. pp. 151–168 (2017)
Google Scholar
Côté, M.A., et al.: Textworld: A learning environment for text-based games. In: Workshop on Computer Games. pp. 41–75. Springer (2018)
Google Scholar
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
Dulac-Arnold, G., et al.: Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679 (2015)
Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., Creus-Costa, J., Savarese, S., Fei-Fei, L.: Surreal: Open-source reinforcement learning framework and robot manipulation benchmark. In: Conf. Robot Learning. pp. 767–782. PMLR (2018)
Google Scholar
Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: TraceVis: Towards Visualization for Deep Statistical Model Checking. In: Int. Symp. Leveraging Applications of Formal Methods, Verification and Validation (2020)
Google Scholar
Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statistical model checking. In: FORTE 2020. pp. 96–114 (2020)
Google Scholar
Gros, T.P., Höller, D., Hoffmann, J., Klauck, M., Meerkamp, H., Wolf, V.: DSMC evaluation stages: Fostering robust and safe behavior in deep reinforcement learning. In: QEST. pp. 197–216 (2021)
Google Scholar
Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep reinforcement learning and imitation learning. In: QEST 2020. vol. 12289, pp. 11–17. Springer (2020)
Google Scholar
Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-policy Updates. In: 2017 IEEE Int. Conf. robotics and automation (ICRA). pp. 3389–3396. IEEE (2017)
Google Scholar
Guo, X., Singh, S., Lee, H., Lewis, R.L., Wang, X.: Deep learning for real-time atari game play using offline monte-carlo tree search planning. In: Advances in neural information processing systems. pp. 3338–3346 (2014)
Google Scholar
Gustafsson, N., et al.: TorchSharp. https://github.com/dotnet/TorchSharp (2021), accessed on Sept., 22, 2021
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: Int. conf. ML. pp. 1861–1870. PMLR (2018)
Google Scholar
Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded probabilistic model checking techniques. In: SETTA 2016. pp. 85–100 (2016)
Google Scholar
Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013)
MATH
CrossRef
Google Scholar
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasmc: A web-based probabilistic model checker. In: FM 2014. pp. 312–317 (2014)
Google Scholar
Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for quantitative modelling and verification. In: TACAS 2014. pp. 593–598 (2014)
Google Scholar
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quantitative Verification Benchmark Set. In: TACAS 2019. pp. 344–350 (2019)
Google Scholar
Hartmanns, A., Timmer, M.: On-the-Fly Confluence Detection for Statistical Model Checking. In: NFM 2013
Google Scholar
Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. Jour. on Software Tools for Technology Transfer (2021)
Google Scholar
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: VMCAI 2004. vol. 2937, pp. 73–84. Springer (2004)
Google Scholar
Ho, J., Ermon, S.: Generative adversarial imitation learning. Advances in neural information processing systems 29, 4565–4573 (2016)
Google Scholar
Hoffmann, J., Hermanns, H., Klauck, M., Steinmetz, M., Karpas, E., Magazzeni, D.: Let’s learn their language? A case for planning with automata-network languages from model checking. In: AAAI 2020. pp. 13569–13575 (2020)
Google Scholar
Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap between probabilistic model checking and probabilistic planning: Survey, compilations, and empirical comparison. J. Artif. Intell. Res. 68, 247–310 (2020)
MathSciNet
MATH
CrossRef
Google Scholar
Koehler, J., Schuster, K.: Elevator control as a planning problem. In: 5. Int. Conf. Art. Intel. Planning Sys. pp. 331–338. AAAI (2000)
Google Scholar
Köhl, M.A., Klauck, M., Hermanns, H.: Momba: JANI meets python. In: TACAS. pp. 389–398 (2021)
Google Scholar
Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM 2007, Advanced Lectures. pp. 220–270. LNCS 4486 (2007)
Google Scholar
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: 23. CAV 2011. pp. 585–591 (2011)
Google Scholar
Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: 9. QEST 2012. pp. 203–204 (2012)
Google Scholar
Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic model checking of deadline properties in the IEEE 1394 firewire root contention protocol. Formal Aspects Comput. 14(3), 295–318 (2003)
MATH
CrossRef
Google Scholar
Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In: Runtime Verification - 1. RV 2010. vol. 6418, pp. 122–135. Springer (2010)
Google Scholar
Liessner, R., Schmitt, J., Dietermann, A., Bäker, B.: Hyperparameter optimization for deep reinforcement learning in vehicle energy management. In: ICAART (2). pp. 134–144 (2019)
Google Scholar
McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes. In: ICAPS. pp. 151–160 (2005)
Google Scholar
Mnih, V., et al.: Human-level Control through Deep Reinforcement Learning. Nature 518, 529–533 (2015)
CrossRef
Google Scholar
Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Int. conf. machine learning. pp. 1928–1937. PMLR (2016)
Google Scholar
Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solving the vehicle routing problem. In: Advances in Neural Inf. Proc. Sys. 31, pp. 9839–9849. Curran Associates, Inc. (2018)
Google Scholar
Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by self-supervised prediction. In: Int. conf. ML. pp. 2778–2787. PMLR (2017)
Google Scholar
Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under uncertainty. In: IJCAI. pp. 2350–2356 (2013)
Google Scholar
Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models: Revisiting determinization. In: ICAPS 2014 (2014)
Google Scholar
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley (1994)
Google Scholar
Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep Reinforcement Learning Framework for Autonomous Driving. Electronic Imaging 2017(19), 70–76 (2017)
CrossRef
Google Scholar
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic Systems. In: CAV. pp. 266–280 (2005)
Google Scholar
Silver, D., et al.: Mastering the Game of Go Without Human Knowledge. Nature 550(7676), 354–359 (2017)
CrossRef
Google Scholar
Silver, D., et al.: A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go Through Self-play. Science 362(6419), 1140–1144 (2018)
MathSciNet
MATH
CrossRef
Google Scholar
Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: 5. AMAST Workshop, ARTS’99. vol. 1601, pp. 53–74. Springer (1999)
Google Scholar
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive computation and machine learning, The MIT Press, second edn. (2018)
Google Scholar
Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically interpretable reinforcement learning. In: Int. Conf. on ML. PMLR (2018)
Google Scholar
Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., Kyek, A.: Optimization of global production scheduling with deep reinforcement learning. Procedia Cirp 72, 1264–1269 (2018)
CrossRef
Google Scholar
Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson env: Real-world perception for embodied agents. In: IEEE Conf. Computer Vision and Pattern Recognition. pp. 9068–9079 (2018)
Google Scholar
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: CAV 2002. vol. 2404, pp. 223–235. Springer (2002)
Google Scholar
Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. Statistical Probabilistic Model Checking: An Empirical Study. In: TACAS. pp. 46–60. Springer (2004)
Google Scholar
Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., Levine, S.: Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In: Conf. Robot Learning. pp. 1094–1100. PMLR (2020)
Google Scholar
Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Stateflow/Simulink verification. FM Sys. Des. 43(2), 338–367 (2013)
MATH
Google Scholar