Skip to main content

Cardiac Surgery and Diabetes Mellitus

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

In 2018, 34.2 million or 10.5% of the US population were affected by diabetes, and 88 million Americans aged 18 and older had prediabetes [1]. These individuals carry up to eight times the risk of cardiovascular events compared to nondiabetic individuals, making cardiovascular disease the largest cause of mortality in this population [2]. The prevalence of coronary artery disease (CAD) has been estimated to be as high as 55% in the diabetic population [3]. It has been shown that diabetes is a major independent risk factor for cardiovascular disease after adjustment for other risk factors such as age, hypertension, hypercholesterolemia, and tobacco abuse [4]. Patients with diabetes appear to develop accelerated and more severe CAD and also exhibit a diminished angiogenic response to myocardial ischemia as shown angiographically [5] and in autopsy studies [6]. This diminished angiogenic response is associated with coronary microvascular and endothelial dysfunction as well as the presence of an overall anti-angiogenic milieu leading to fewer collateral blood vessels [7, 8]. Hyperglycemia, hyperinsulinemia, and insulin resistance further add to the development of CAD, cardiomyopathy, and heart failure (Fig. 24.1). This culminates in a greater tendency toward more frequent and more severe adverse cardiovascular events. The relative risk of myocardial infarction is 50% greater in diabetic men and 150% greater in diabetic women [9]. Approximately, 20–30% of patients who have undergone coronary artery bypass grafting (CABG) have diabetes mellitus [10]. Thus, diabetic patients undergoing surgical coronary revascularization represent a large and complex patient population. There continue to be advancements in both percutaneous coronary interventions (PCI), primarily the use of drug-eluting stents, and surgical techniques, such as off-pump CABG and the use of multiple arterial grafts, that have continued to improve methods of coronary revascularization. While there is evidence to suggest that these new techniques have improved outcomes in diabetic patients [11], the optimal treatment for multivessel CAD continues to evolve for the diabetic patient population, which still suffers from worse long-term outcomes compared to the nondiabetic population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American DA. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41:917–28.

    Article  Google Scholar 

  2. Grundy SM, Garber A, Goldberg R, Havas S, Holman R, Lamendola C, Howard WJ, Savage P, Sowers J, Vega GL. Prevention conference VI: diabetes and cardiovascular disease: writing group IV: lifestyle and medical management of risk factors. Circulation. 2002;105:e153–8.

    Article  PubMed  Google Scholar 

  3. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59:8–13.

    Article  CAS  PubMed  Google Scholar 

  5. Abaci A, Oguzhan A, Kahraman S, Eryol NK, Unal S, Arinc H, Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation. 1999;99:2239–42.

    Article  CAS  PubMed  Google Scholar 

  6. Yarom R, Zirkin H, Stammler G, Rose AG. Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material. J Pathol. 1992;166:265–70.

    Article  CAS  PubMed  Google Scholar 

  7. Boodhwani M, Sodha NR, Mieno S, Xu SH, Feng J, Ramlawi B, Clements RT, Sellke FW. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation. 2007;116:I31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Matyal R, Mahmood F, Robich M, Glazer H, Khabbaz K, Hess P, Bianchi C, Hagberg R, Hu SX, Sellke FW. Chronic type II diabetes mellitus leads to changes in neuropeptide Y receptor expression and distribution in human myocardial tissue. Eur J Pharmacol. 2011;665:19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waller BF, Palumbo PJ, Lie JT, Roberts WC. Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am J Med. 1980;69:498–506.

    Article  CAS  PubMed  Google Scholar 

  10. Morris JJ, Smith LR, Jones RH, Glower DD, Morris PB, Muhlbaier LH, Reves JG, Rankin JS. Influence of diabetes and mammary artery grafting on survival after coronary bypass. Circulation. 1991;84:III275-84.

    PubMed  Google Scholar 

  11. Robich MP, Iribarne A, Leavitt BJ, Malenka DJ, Quinn RD, Olmstead EM, Ross CS, Sawyer DB, Klemperer JD, Clough RA, Kramer RS, Baribeau YR, Sardella GL, AW DS, Northern New England Cardiovascular Disease Study G. Intensity of glycemic control affects long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg. 2019;107:477–84.

    Article  PubMed  Google Scholar 

  12. Kogan A, Ram E, Levin S, Fisman EZ, Tenenbaum A, Raanani E, Sternik L. Impact of type 2 diabetes mellitus on short- and long-term mortality after coronary artery bypass surgery. Cardiovasc Diabetol. 2018;17:151.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whang W, Bigger JT Jr. Diabetes and outcomes of coronary artery bypass graft surgery in patients with severe left ventricular dysfunction: results from the CABG patch trial database. The CABG patch trial Investigators and coordinators. J Am Coll Cardiol. 2000;36:1166–72.

    Article  CAS  PubMed  Google Scholar 

  14. Smith LR, Harrell FE Jr, Rankin JS, Califf RM, Pryor DB, Muhlbaier LH, Lee KL, Mark DB, Jones RH, Oldham HN, et al. Determinants of early versus late cardiac death in patients undergoing coronary artery bypass graft surgery. Circulation. 1991;84:III245-53.

    PubMed  Google Scholar 

  15. Calafiore AM, Di Mauro M, Di Giammarco G, Contini M, Vitolla G, Iaco AL, Canosa C, D'Alessandro S. Effect of diabetes on early and late survival after isolated first coronary bypass surgery in multivessel disease. J Thorac Cardiovasc Surg. 2003;125:144–54.

    Article  PubMed  Google Scholar 

  16. Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, Guyton RA. Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999;67:1045–52.

    Article  CAS  PubMed  Google Scholar 

  17. Fietsam R Jr, Bassett J, Glover JL. Complications of coronary artery surgery in diabetic patients. Am Surg. 1991;57:551–7.

    PubMed  Google Scholar 

  18. Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40:418–23.

    Article  PubMed  Google Scholar 

  19. Szabo Z, Hakanson E, Svedjeholm R. Early postoperative outcome and medium-term survival in 540 diabetic and 2239 nondiabetic patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2002;74:712–9.

    Article  PubMed  Google Scholar 

  20. Zacharias A, Habib RH. Factors predisposing to median sternotomy complications. Deep vs superficial infection. Chest. 1996;110:1173–8.

    Article  CAS  PubMed  Google Scholar 

  21. Carpino PA, Khabbaz KR, Bojar RM, Rastegar H, Warner KG, Murphy RE, Payne DD. Clinical benefits of endoscopic vein harvesting in patients with risk factors for saphenectomy wound infections undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2000;119:69–75.

    Article  CAS  PubMed  Google Scholar 

  22. Morricone L, Ranucci M, Denti S, Cazzaniga A, Isgro G, Enrini R, Caviezel F. Diabetes and complications after cardiac surgery: comparison with a non-diabetic population. Acta Diabetol. 1999;36:77–84.

    Article  CAS  PubMed  Google Scholar 

  23. Hillis GS, Croal BL, Buchan KG, El-Shafei H, Gibson G, Jeffrey RR, Millar CG, Prescott GJ, Cuthbertson BH. Renal function and outcome from coronary artery bypass grafting: impact on mortality after a 2.3-year follow-up. Circulation. 2006;113:1056–62.

    Article  PubMed  Google Scholar 

  24. Lauruschkat AH, Arnrich B, Albert AA, Walter JA, Amann B, Rosendahl UP, Alexander T, Ennker J. Diabetes mellitus as a risk factor for pulmonary complications after coronary bypass surgery. J Thorac Cardiovasc Surg. 2008;135:1047–53.

    Article  PubMed  Google Scholar 

  25. Ferraris VA, Ferraris SP, Harmon RC, Evans BD. Risk factors for early hospital readmission after cardiac operations. J Thorac Cardiovasc Surg. 2001;122:278–86.

    Article  CAS  PubMed  Google Scholar 

  26. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217–25.

    Article  Google Scholar 

  27. The Bypass Angioplasty Revascularization Investigation (BARI). Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease. Circulation. 1997;96:1761–9.

    Article  Google Scholar 

  28. Detre KM, Lombardero MS, Brooks MM, Hardison RM, Holubkov R, Sopko G, Frye RL, Chaitman BR. The effect of previous coronary-artery bypass surgery on the prognosis of patients with diabetes who have acute myocardial infarction. Bypass angioplasty revascularization investigation Investigators. N Engl J Med. 2000;342:989–97.

    Article  CAS  PubMed  Google Scholar 

  29. Srinivas VS, Brooks MM, Detre KM, King SB 3rd, Jacobs AK, Johnston J, Williams DO. Contemporary percutaneous coronary intervention versus balloon angioplasty for multivessel coronary artery disease: a comparison of the National Heart, lung and blood institute dynamic registry and the bypass angioplasty revascularization investigation (BARI) study. Circulation. 2002;106:1627–33.

    Article  CAS  PubMed  Google Scholar 

  30. Robich MP, Leavitt BJ, Ryan TJ, Jr., Westbrook BM, Malenka DJ, Gelb DJ, Ross CS, Wiseman A, Magnus P, Huang YL, DiScipio AW, Iribarne a and northern New England cardiovascular disease study G. Comparative effectiveness of revascularization strategies for early coronary artery disease: A multicenter analysis. J Thorac Cardiovasc Surg. 2022; 163(2):645–56.

    Google Scholar 

  31. Serruys PW, Unger F, Sousa JE, Jatene A, Bonnier HJ, Schonberger JP, Buller N, Bonser R, van den Brand MJ, van Herwerden LA, Morel MA, van Hout BA. Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med. 2001;344:1117–24.

    Article  CAS  PubMed  Google Scholar 

  32. Abizaid A, Costa MA, Centemero M, Abizaid AS, Legrand VM, Limet RV, Schuler G, Mohr FW, Lindeboom W, Sousa AG, Sousa JE, van Hout B, Hugenholtz PG, Unger F, Serruys PW. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the arterial revascularization therapy study (ARTS) trial. Circulation. 2001;104:533–8.

    Article  CAS  PubMed  Google Scholar 

  33. Unger F, Serruys PW, Yacoub MH, Ilsley C, Paulsen PK, Nielsen TT, Eysmann L, Kiemeneij F. Revascularization in multivessel disease: comparison between two-year outcomes of coronary bypass surgery and stenting. J Thorac Cardiovasc Surg. 2003;125:809–20.

    Article  PubMed  Google Scholar 

  34. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Stahle E, Feldman TE, van den Brand M, Bass EJ, Van Dyck N, Leadley K, Dawkins KD, Mohr FW, Investigators S. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.

    Article  CAS  PubMed  Google Scholar 

  35. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K, van den Brand M, Van Dyck N, Russell ME, Mohr FW, Serruys PW. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1:219–27.

    PubMed  Google Scholar 

  36. Genereux P, Palmerini T, Caixeta A, Cristea E, Mehran R, Sanchez R, Lazar D, Jankovic I, Corral MD, Dressler O, Fahy MP, Parise H, Lansky AJ, Stone GW. SYNTAX score reproducibility and variability between interventional cardiologists, core laboratory technicians, and quantitative coronary measurements. Circ Cardiovasc Interv. 2011;4:553–61.

    Article  PubMed  Google Scholar 

  37. Kappetein AP, Head SJ, Morice MC, Banning AP, Serruys PW, Mohr FW, Dawkins KD, Mack MJ, Investigators S. Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg. 2013;43:1006–13.

    Article  PubMed  Google Scholar 

  38. Thuijs D, Kappetein AP, Serruys PW, Mohr FW, Morice MC, Mack MJ, Holmes DR Jr, Curzen N, Davierwala P, Noack T, Milojevic M, Dawkins KD, da Costa BR, Juni P, Head SJ, Investigators SES. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet. 2019;394:1325–34.

    Article  CAS  PubMed  Google Scholar 

  39. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau R, Weinberger J, Ramanathan K, Sousa JE, Rankin J, Bhargava B, Buse J, Hueb W, Smith CR, Muratov V, Bansilal S, King S 3rd, Bertrand M, Fuster V, Investigators FT. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  PubMed  Google Scholar 

  40. Palmerini T, Serruys P, Kappetein AP, Genereux P, Riva DD, Reggiani LB, Christiansen EH, Holm NR, Thuesen L, Makikallio T, Morice MC, Ahn JM, Park SJ, Thiele H, Boudriot E, Sabatino M, Romanello M, Biondi-Zoccai G, Cavalcante R, Sabik JF, Stone GW. Clinical outcomes with percutaneous coronary revascularization vs coronary artery bypass grafting surgery in patients with unprotected left main coronary artery disease: a meta-analysis of 6 randomized trials and 4,686 patients. Am Heart J. 2017;190:54–63.

    Article  PubMed  Google Scholar 

  41. Holm NR, Makikallio T, Lindsay MM, Spence MS, Erglis A, Menown IBA, Trovik T, Kellerth T, Kalinauskas G, Mogensen LJH, Nielsen PH, Niemela M, Lassen JF, Oldroyd K, Berg G, Stradins P, Walsh SJ, Graham ANJ, Endresen PC, Frobert O, Trivedi U, Anttila V, Hildick-Smith D, Thuesen L, Christiansen EH, investigators N. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: updated 5-year outcomes from the randomised, non-inferiority NOBLE trial. Lancet. 2020;395:191–9.

    Article  PubMed  Google Scholar 

  42. Stone GW, Kappetein AP, Sabik JF, Pocock SJ, Morice MC, Puskas J, Kandzari DE, Karmpaliotis D, Brown WM 3rd, Lembo NJ, Banning A, Merkely B, Horkay F, Boonstra PW, van Boven AJ, Ungi I, Bogats G, Mansour S, Noiseux N, Sabate M, Pomar J, Hickey M, Gershlick A, Buszman PE, Bochenek A, Schampaert E, Page P, Modolo R, Gregson J, Simonton CA, Mehran R, Kosmidou I, Genereux P, Crowley A, Dressler O, Serruys PW, Investigators ET. Five-year outcomes after PCI or CABG for left Main coronary disease. N Engl J Med. 2019;381:1820–30.

    Article  PubMed  Google Scholar 

  43. Sedlis SP, Morrison DA, Lorin JD, Esposito R, Sethi G, Sacks J, Henderson W, Grover F, Ramanathan KB, Weiman D, Saucedo J, Antakli T, Paramesh V, Pett S, Vernon S, Birjiniuk V, Welt F, Krucoff M, Wolfe W, Lucke JC, Mediratta S, Booth D, Murphy E, Ward H, Miller L, Kiesz S, Barbiere C, Lewis D. Percutaneous coronary intervention versus coronary bypass graft surgery for diabetic patients with unstable angina and risk factors for adverse outcomes with bypass: outcome of diabetic patients in the AWESOME randomized trial and registry. J Am Coll Cardiol. 2002;40:1555–66.

    Article  PubMed  Google Scholar 

  44. Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, Vlachojannis GJ, Jensen LO, Christiansen EH, Berencsi K, Valgimigli M, Orlandi C, Petrou M, Rapezzi C, Stone GW. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.

    Article  CAS  PubMed  Google Scholar 

  45. Head SJ, Milojevic M, Daemen J, Ahn JM, Boersma E, Christiansen EH, Domanski MJ, Farkouh ME, Flather M, Fuster V, Hlatky MA, Holm NR, Hueb WA, Kamalesh M, Kim YH, Makikallio T, Mohr FW, Papageorgiou G, Park SJ, Rodriguez AE, Sabik JF 3rd, Stables RH, Stone GW, Serruys PW, Kappetein AP. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet. 2018;391:939–48.

    Article  PubMed  Google Scholar 

  46. Spadaccio C, Benedetto U. Coronary artery bypass grafting (CABG) vs. percutaneous coronary intervention (PCI) in the treatment of multivessel coronary disease: quo vadis? -a review of the evidences on coronary artery disease. Ann Cardiothorac Surg. 2018;7:506–15.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Head SJ, Davierwala PM, Serruys PW, Redwood SR, Colombo A, Mack MJ, Morice MC, Holmes DR Jr, Feldman TE, Stahle E, Underwood P, Dawkins KD, Kappetein AP, Mohr FW. Coronary artery bypass grafting vs. percutaneous coronary intervention for patients with three-vessel disease: final five-year follow-up of the SYNTAX trial. Eur Heart J. 2014;35:2821–30.

    Article  CAS  PubMed  Google Scholar 

  48. Park SJ, Ahn JM, Kim YH, Park DW, Yun SC, Lee JY, Kang SJ, Lee SW, Lee CW, Park SW, Choo SJ, Chung CH, Lee JW, Cohen DJ, Yeung AC, Hur SH, Seung KB, Ahn TH, Kwon HM, Lim DS, Rha SW, Jeong MH, Lee BK, Tresukosol D, Fu GS, Ong TK, Investigators BT. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N Engl J Med. 2015;372:1204–12.

    Article  CAS  PubMed  Google Scholar 

  49. Cavalcante R, Sotomi Y, Zeng Y, Lee CW, Ahn JM, Collet C, Tenekecioglu E, Suwannasom P, Onuma Y, Park SJ, Serruys PW. Coronary bypass surgery versus stenting in multivessel disease involving the proximal left anterior descending coronary artery. Heart. 2017;103:428–33.

    Article  PubMed  Google Scholar 

  50. Hannan EL, Racz MJ, Walford G, Jones RH, Ryan TJ, Bennett E, Culliford AT, Isom OW, Gold JP, Rose EA. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N Engl J Med. 2005;352:2174–83.

    Article  CAS  PubMed  Google Scholar 

  51. Hannan EL, Wu C, Walford G, Culliford AT, Gold JP, Smith CR, Higgins RS, Carlson RE, Jones RH. Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N Engl J Med. 2008;358:331–41.

    Article  CAS  PubMed  Google Scholar 

  52. Tam DY, Dharma C, Rocha R, Farkouh ME, Abdel-Qadir H, Sun LY, Wijeysundera HC, Austin PC, Udell JA, Gaudino M, Fremes SE, Lee DS. Long-term survival after surgical or percutaneous revascularization in patients with diabetes and multivessel coronary disease. J Am Coll Cardiol. 2020;76:1153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iribarne A, DiScipio AW, Leavitt BJ, Baribeau YR, McCullough JN, Weldner PW, Huang YL, Robich MP, Clough RA, Sardella GL, Olmstead EM, Malenka DJ, Northern New England Cardiovascular Disease Study G. Comparative effectiveness of coronary artery bypass grafting versus percutaneous coronary intervention in a real-world surgical treatment for ischemic heart failure trial population. J Thorac Cardiovasc Surg. 2018;156:1410–1421 e2.

    Article  PubMed  Google Scholar 

  54. Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A, European Society of Cardiology Committee for Practice G, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, ECG C, Sousa Uva M, Achenbach S, Pepper J, Anyanwu A, Badimon L, Bauersachs J, Baumbach A, Beygui F, Bonaros N, De Carlo M, Deaton C, Dobrev D, Dunning J, Eeckhout E, Gielen S, Hasdai D, Kirchhof P, Luckraz H, Mahrholdt H, Montalescot G, Paparella D, Rastan AJ, Sanmartin M, Sergeant P, Silber S, Tamargo J, ten Berg J, Thiele H, van Geuns RJ, Wagner HO, Wassmann S, Wendler O, Zamorano JL, Task Force on Myocardial Revascularization of the European Society of C, the European Association for Cardio-Thoracic S and European Association of Percutaneous Cardiovascular I. ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46:517–92.

    PubMed  Google Scholar 

  55. O'Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW, American College of Cardiology Foundation/American Heart Association Task Force on Practice G. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;2013(127):e362–425.

    Google Scholar 

  56. Thiele H, Akin I, Sandri M, de Waha-Thiele S, Meyer-Saraei R, Fuernau G, Eitel I, Nordbeck P, Geisler T, Landmesser U, Skurk C, Fach A, Jobs A, Lapp H, Piek JJ, Noc M, Goslar T, Felix SB, Maier LS, Stepinska J, Oldroyd K, Serpytis P, Montalescot G, Barthelemy O, Huber K, Windecker S, Hunziker L, Savonitto S, Torremante P, Vrints C, Schneider S, Zeymer U, Desch S, Investigators C-S. One-year outcomes after PCI strategies in cardiogenic shock. N Engl J Med. 2018;379:1699–710.

    Article  PubMed  Google Scholar 

  57. Schwartz L, Kip KE, Frye RL, Alderman EL, Schaff HV, Detre KM. Coronary bypass graft patency in patients with diabetes in the bypass angioplasty revascularization investigation (BARI). Circulation. 2002;106:2652–8.

    Article  PubMed  Google Scholar 

  58. Axelsson TA, Adalsteinsson JA, Arnadottir LO, Helgason D, Johannesdottir H, Helgadottir S, Orrason AW, Andersen K, Gudbjartsson T. Long-term outcomes after coronary artery bypass surgery in patients with diabetes. Interact Cardiovasc Thorac Surg. 2020;30:685–90.

    Article  PubMed  Google Scholar 

  59. Rawshani A, Rawshani A, Gudbjornsdottir S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;377:300–1.

    Article  PubMed  Google Scholar 

  60. Arom KV, Flavin TF, Emery RW, Kshettry VR, Janey PA, Petersen RJ. Safety and efficacy of off-pump coronary artery bypass grafting. Ann Thorac Surg. 2000;69:704–10.

    Article  CAS  PubMed  Google Scholar 

  61. Taggart DP. Respiratory dysfunction after cardiac surgery: effects of avoiding cardiopulmonary bypass and the use of bilateral internal mammary arteries. Eur J Cardiothorac Surg. 2000;18:31–7.

    Article  CAS  PubMed  Google Scholar 

  62. Taggart DP, Browne SM, Halligan PW, Wade DT. Is cardiopulmonary bypass still the cause of cognitive dysfunction after cardiac operations? J Thorac Cardiovasc Surg. 1999;118:414–20; discussion 420-1

    Article  CAS  PubMed  Google Scholar 

  63. Buffolo E, de Andrade CS, Branco JN, Teles CA, Aguiar LF, Gomes WJ. Coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg. 1996;61:63–6.

    Article  CAS  PubMed  Google Scholar 

  64. Magee MJ, Dewey TM, Acuff T, Edgerton JR, Hebeler JF, Prince SL, Mack MJ. Influence of diabetes on mortality and morbidity: off-pump coronary artery bypass grafting versus coronary artery bypass grafting with cardiopulmonary bypass. Ann Thorac Surg. 2001;72:776–80; discussion 780-1

    Article  CAS  PubMed  Google Scholar 

  65. Huang KC, Wu IH, Chou NK, Yang YY, Lin LC, Yu HY, Chi NH. Late outcomes of off-pump versus on-pump coronary bypass in patients with diabetes: a nationwide study from Taiwan. J Thorac Cardiovasc Surg. 2019;157:960–969 e2.

    Article  PubMed  Google Scholar 

  66. Shroyer ALW, Quin JA, Wagner TH, Carr BM, Collins JF, Almassi GH, Bishawi M, Grover FL, Hattler B. Off-pump versus on-pump impact: diabetic patient 5-year coronary artery bypass clinical outcomes. Ann Thorac Surg. 2019;107:92–8.

    Article  PubMed  Google Scholar 

  67. Chikwe J, Lee T, Itagaki S, Adams DH, Egorova NN. Long-term outcomes after off-pump versus on-pump coronary artery bypass grafting by experienced surgeons. J Am Coll Cardiol. 2018;72:1478–86.

    Article  PubMed  Google Scholar 

  68. Matkovic M, Tutus V, Bilbija I, Milin Lazovic J, Savic M, Cubrilo M, Aleksic N, Atanasijevic I, Andrijasevic V, Putnik S. Long term outcomes of the off-pump and on-pump coronary artery bypass grafting in a high-volume center. Sci Rep. 2019;9:8567.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raja SG, Garg S, Soni MK, Rochon M, Marczin N, Bhudia SK, De Robertis F, Bahrami T. On-pump and off-pump coronary artery bypass grafting for patients needing at least two grafts: comparative outcomes at 20 years. Eur J Cardiothorac Surg. 2020;57:512–9.

    PubMed  Google Scholar 

  70. Farinas JM, Carrier M, Hebert Y, Cartier R, Pellerin M, Perrault LP, Pelletier LC. Comparison of long-term clinical results of double versus single internal mammary artery bypass grafting. Ann Thorac Surg. 1999;67:466–70.

    Article  CAS  PubMed  Google Scholar 

  71. Endo M, Tomizawa Y, Nishida H. Bilateral versus unilateral internal mammary revascularization in patients with diabetes. Circulation. 2003;108:1343–9.

    Article  PubMed  Google Scholar 

  72. Taggart DP, D'Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–5.

    Article  CAS  PubMed  Google Scholar 

  73. Iribarne A, Westbrook BM, Malenka DJ, Schmoker JD, McCullough JN, Leavitt BJ, Weldner PW, DeSimone J, Kramer RS, Quinn RD, Olmstead EM, Klemperer JD, Sardella GL, Ross CS. DiScipio AW and northern New England cardiovascular disease study G. should diabetes be a contraindication to bilateral internal mammary artery grafting? Ann Thorac Surg. 2018;105:709–14.

    Article  PubMed  Google Scholar 

  74. Boodhwani M, Lam BK, Nathan HJ, Mesana TG, Ruel M, Zeng W, Sellke FW, Rubens FD. Skeletonized internal thoracic artery harvest reduces pain and dysesthesia and improves sternal perfusion after coronary artery bypass surgery: a randomized, double-blind, within-patient comparison. Circulation. 2006;114:766–73.

    Article  PubMed  Google Scholar 

  75. Peterson MD, Borger MA, Rao V, Peniston CM, Feindel CM. Skeletonization of bilateral internal thoracic artery grafts lowers the risk of sternal infection in patients with diabetes. J Thorac Cardiovasc Surg. 2003;126:1314–9.

    Article  PubMed  Google Scholar 

  76. Hoffman DM, Dimitrova KR, Decastro H, Friedmann P, Geller CM, Ko W, Tranbaugh RF. Improving long term outcome for diabetic patients undergoing surgical revascularization by use of the radial artery conduit: a propensity matched study. J Cardiothorac Surg. 2013;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Deb S, Singh SK, Moussa F, Tsubota H, Une D, Kiss A, Tomlinson G, Afshar M, Sless R, Cohen EA, Radhakrishnan S, Dubbin J, Schwartz L. Fremes SE and radial artery patency study I. the long-term impact of diabetes on graft patency after coronary artery bypass grafting surgery: a substudy of the multicenter radial artery patency study. J Thorac Cardiovasc Surg. 2014;148:1246–53; discussion 1253

    Article  PubMed  Google Scholar 

  78. Tatoulis J, Wynne R, Skillington PD, Buxton BF. Total arterial revascularization: a superior strategy for diabetic patients who require coronary surgery. Ann Thorac Surg. 2016;102:1948–55.

    Article  PubMed  Google Scholar 

  79. Zenati MA, Bhatt DL, Bakaeen FG, Stock EM, Biswas K, Gaziano JM, Kelly RF, Tseng EE, Bitondo J, Quin JA, Almassi GH, Haime M, Hattler B, DeMatt E, Scrymgeour A, Huang GD, Investigators RT. Randomized trial of endoscopic or open vein-graft harvesting for coronary-artery bypass. N Engl J Med. 2019;380:132–41.

    Article  PubMed  Google Scholar 

  80. Engelman DT, Ben Ali W, Williams JB, Perrault LP, Reddy VS, Arora RC, Roselli EE, Khoynezhad A, Gerdisch M, Levy JH, Lobdell K, Fletcher N, Kirsch M, Nelson G, Engelman RM, Gregory AJ, Boyle EM. Guidelines for perioperative Care in Cardiac Surgery: enhanced recovery after surgery society recommendations. JAMA Surg. 2019;154:755–66.

    Article  PubMed  Google Scholar 

  81. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355:773–8.

    Article  CAS  PubMed  Google Scholar 

  82. Galindo RJ, Fayfman M, Umpierrez GE. Perioperative Management of Hyperglycemia and Diabetes in cardiac surgery patients. Endocrinol Metab Clin N Am. 2018;47:203–22.

    Article  Google Scholar 

  83. Montori VM, Bistrian BR, McMahon MM. Hyperglycemia in acutely ill patients. JAMA. 2002;288:2167–9.

    Article  PubMed  Google Scholar 

  84. Pandolfi A, Giaccari A, Cilli C, Alberta MM, Morviducci L, De Filippis EA, Buongiorno A, Pellegrini G, Capani F, Consoli A. Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol. 2001;38:71–6.

    Article  CAS  PubMed  Google Scholar 

  85. Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M, Newton CA, Smiley-Byrd D, Vellanki P, Halkos M, Puskas JD, Guyton RA, Thourani VH. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care. 2015;38:1665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Furnary AP, Gao G, Grunkemeier GL, Wu Y, Zerr KJ, Bookin SO, Floten HS, Starr A. Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003;125:1007–21.

    Google Scholar 

  87. Verma S, Maitland A, Weisel RD, Fedak PW, Li SH, Mickle DA, Li RK, Ko L, Rao V. Increased endothelin-1 production in diabetic patients after cardioplegic arrest and reperfusion impairs coronary vascular reactivity: reversal by means of endothelin antagonism. J Thorac Cardiovasc Surg. 2002;123:1114–9.

    Article  CAS  PubMed  Google Scholar 

  88. Verma S, Maitland A, Weisel RD, Li SH, Fedak PW, Pomroy NC, Mickle DA, Li RK, Ko L, Rao V. Hyperglycemia exaggerates ischemia-reperfusion-induced cardiomyocyte injury: reversal with endothelin antagonism. J Thorac Cardiovasc Surg. 2002;123:1120–4.

    Article  CAS  PubMed  Google Scholar 

  89. Sabe SA, Feng J, Liu Y, Scrimgeour LA, Ehsan A, Sellke FW. Decreased contractile response of peripheral arterioles to serotonin after CPB in patients with diabetes. Surgery. 2018;164:288–93.

    Article  PubMed  Google Scholar 

  90. Sellke N, Kuczmarski A, Lawandy I, Cole VL, Ehsan A, Singh AK, Liu Y, Sellke FW, Feng J. Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery. J Thorac Cardiovasc Surg. 2018;156:2098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matata BM, Galinanes M. Cardiopulmonary bypass exacerbates oxidative stress but does not increase proinflammatory cytokine release in patients with diabetes compared with patients without diabetes: regulatory effects of exogenous nitric oxide. J Thorac Cardiovasc Surg. 2000;120:1–11.

    Article  CAS  PubMed  Google Scholar 

  92. Matata BM, Sosnowski AW, Galinanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann Thorac Surg. 2000;69:785–91.

    Article  CAS  PubMed  Google Scholar 

  93. Potz BA, Scrimgeour LA, Feng J, Sellke FW. Diabetes and Cardioplegia. J Nat Sci. 2017;3:e394.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Sellke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Robich, M.P., Sellke, F.W. (2023). Cardiac Surgery and Diabetes Mellitus. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_26

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics