Skip to main content

Microcirculation of the Diabetic Foot

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The microcirculation in diabetic feet is subject to the same changes found in other end organs of diabetic patients, such as the retina or the kidneys. Complications, such as foot ulceration, lead to further morbidity and hospitalizations. Research looking into the causes of microcirculatory dysfunction has revealed an interplay of numerous factors. The most prominent findings are impaired endothelium-dependent and -independent vasodilation and reduced or absent nerve axon reflex-related vasodilation. This renders the diabetic foot unable to mount a vasodilatory response under conditions of stress, such as injury, and makes it functionally ischemic even in the presence of satisfactory blood flow under normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoffstad O, Mitra N, Walsh J, Margolis DJ. Diabetes, lower-extremity amputation, and death. Diabetes Care. 2015;38:1852–7.

    Article  PubMed  Google Scholar 

  2. Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, Skillman JJ, Logerfo FW. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37:307–15.

    Article  PubMed  Google Scholar 

  3. Kahm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R. Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care. 2018;41:971–8.

    Article  PubMed  Google Scholar 

  4. Petrie D, Lung TW, Rawshani A, Palmer AJ, Svensson AM, Eliasson B, Clarke P. Recent trends in life expectancy for people with type 1 diabetes in Sweden. Diabetologia. 2016;59:1167–76.

    Article  PubMed  Google Scholar 

  5. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370:1514–23.

    Article  CAS  PubMed  Google Scholar 

  6. Malik RA, Tesfaye S, Thompson SD, Veves A, Sharma AK, Boulton AJ, Ward JD. Endoneurial localisation of microvascular damage in human diabetic neuropathy. Diabetologia. 1993;36:454–9.

    Article  CAS  PubMed  Google Scholar 

  7. Tesfaye S, Harris N, Jakubowski JJ, Mody C, Wilson RM, Rennie IG, Ward JD. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia. 1993;36:1266–74.

    Article  CAS  PubMed  Google Scholar 

  8. Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia. 1994;37:847–54.

    Article  CAS  PubMed  Google Scholar 

  9. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–9.

    Article  CAS  PubMed  Google Scholar 

  11. Stevens MJ, Dananberg J, Feldman EL, Lattimer SA, Kamijo M, Thomas TP, Shindo H, Sima AA, Greene DA. The linked roles of nitric oxide, aldose reductase and, (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest. 1994;94:853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stevens MJ, Feldman EL, Greene DA. The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med. 1995;12:566–79.

    Article  CAS  PubMed  Google Scholar 

  13. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973 (author’s transl). Diabete Metab. 1977;3:97.

    CAS  PubMed  Google Scholar 

  14. Palmberg P, Smith M, Waltman S, Krupin T, Singer P, Burgess D, Wendtlant T, Achtenberg J, Cryer P, Santiago J, White N, Kilo C, Daughaday W. The natural history of retinopathy in insulin-dependent juvenile-onset diabetes. Ophthalmology. 1981;88:613–8.

    Article  CAS  PubMed  Google Scholar 

  15. Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  CAS  PubMed  Google Scholar 

  16. Jaap AJ, Tooke JE. Pathophysiology of microvascular disease in non-insulin-dependent diabetes. Clin Sci. 1979;1995(89):3–12.

    Google Scholar 

  17. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53. PubMed PMID: 9742976.

    Google Scholar 

  18. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    Article  CAS  PubMed  Google Scholar 

  19. Jörneskog G, Brismar K, Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995;38:474–80.

    Article  PubMed  Google Scholar 

  20. Hagisawa SST. Skin Morphology and Its Mechanical Properties Associated with Loading. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 161–85.

    Google Scholar 

  21. Flynn MD, Edmonds ME, Tooke JE, Watkins PJ. Direct measurement of capillary blood flow in the diabetic neuropathic foot. Diabetologia. 1988;31:652–6.

    Article  CAS  PubMed  Google Scholar 

  22. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  23. Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc. 2003;78:603–12.

    Article  PubMed  Google Scholar 

  24. Flavahan NA. A vascular mechanistic approach to understanding Raynaud phenomenon. Nat Rev Rheumatol. 2015;11:146–58.

    Article  PubMed  Google Scholar 

  25. Kellogg DL. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol (1985). 2006, 100:1709–18.

    Google Scholar 

  26. Goldenberg S, Alex M, Joshi RA, Blumenthal HT. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes. 1959;8:261–73.

    Article  CAS  PubMed  Google Scholar 

  27. Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation. 1971;43:391–4.

    Article  CAS  PubMed  Google Scholar 

  28. Strandness DE, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes. 1964;13:366–72.

    Article  PubMed  Google Scholar 

  29. LoGerfo FW, Coffman JD. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med. 1984;311:1615–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328:1676–85.

    Article  CAS  PubMed  Google Scholar 

  31. Vanhoutte PM. The endothelium--modulator of vascular smooth-muscle tone. N Engl J Med. 1988;319:512–3.

    Article  CAS  PubMed  Google Scholar 

  32. Jaap AJ, Shore AC, Stockman AJ, Tooke JE. Skin capillary density in subjects with impaired glucose tolerance and patients with type 2 diabetes. Diabet Med. 1996;13:160–4.

    Article  CAS  PubMed  Google Scholar 

  33. Rayman G, Malik RA, Sharma AK, Day JL. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond). 1979;1995(89):467–74.

    Google Scholar 

  34. Malik RA, Metcalfe J, Sharma AK, Day JL, Rayman G. Skin epidermal thickness and vascular density in type 1 diabetes. Diabet Med. 1992;9:263–7.

    Article  CAS  PubMed  Google Scholar 

  35. Raskin P, Pietri AO, Unger R, Shannon WA. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I diabetes mellitus. N Engl J Med. 1983;309:1546–50.

    Article  CAS  PubMed  Google Scholar 

  36. Ajjam ZS, Barton S, Corbett M, Owens D, Marks R. Quantitative evaluation of the dermal vasculature of diabetics. Q J Med. 1985;54:229–39.

    CAS  PubMed  Google Scholar 

  37. Tilton RG, Faller AM, Burkhardt JK, Hoffmann PL, Kilo C, Williamson JR. Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia. 1985;28:895–900.

    Article  CAS  PubMed  Google Scholar 

  38. Rayman G, Williams SA, Spencer PD, Smaje LH, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Br Med J (Clin Res Ed). 1986;292:1295–8.

    Article  CAS  PubMed  Google Scholar 

  39. Flynn MD, Tooke JE. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992;9:320–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44:721–6.

    Article  CAS  PubMed  Google Scholar 

  41. Parving HH, Viberti GC, Keen H, Christiansen JS, Lassen NA. Hemodynamic factors in the genesis of diabetic microangiopathy. Metab Clin Exp. 1983;32:943–9.

    Article  CAS  PubMed  Google Scholar 

  42. Fiordaliso F, Clerici G, Maggioni S, Caminiti M, Bisighini C, Novelli D, Minnella D, Corbelli A, Morisi R, De Iaco A, Faglia E. Prospective study on microangiopathy in type 2 diabetic foot ulcer. Diabetologia. 2016;59:1542–8.

    Article  CAS  PubMed  Google Scholar 

  43. Veves A, Akbari CM, Primavera J, Donaghue VM, Zacharoulis D, Chrzan JS, DeGirolami U, LoGerfo FW, Freeman R. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47:457–63.

    Article  CAS  PubMed  Google Scholar 

  44. Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327:760–4.

    Article  CAS  PubMed  Google Scholar 

  45. Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19:47–64.

    Article  PubMed  Google Scholar 

  46. Cracowski JL, Roustit M. Current methods to assess human cutaneous blood flow: an updated focus on laser-based-techniques. Microcirculation. 2016;23:337–44.

    Article  PubMed  Google Scholar 

  47. Abularrage CJ, Sidawy AN, Aidinian G, Singh N, Weiswasser JM, Arora S. Evaluation of the microcirculation in vascular disease. J Vasc Surg. 2005;42:574–81.

    Article  PubMed  Google Scholar 

  48. Yudovsky D, Nouvong A, Pilon L. Hyperspectral imaging in diabetic foot wound care. J Diabetes Sci Technol. 2010;4:1099–113.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gould LJ. Noninvasive assessment of lower extremity healing potential. Foot Ankle Spec. 2008;1:115–6.

    Article  PubMed  Google Scholar 

  50. Jeffcoate WJ, Clark DJ, Savic N, Rodmell PI, Hinchliffe RJ, Musgrove A, Game FL. Use of HSI to measure oxygen saturation in the lower limb and its correlation with healing of foot ulcers in diabetes. Diabet Med. 2015;32:798–802.

    Article  CAS  PubMed  Google Scholar 

  51. Tuchin VV: Tissue optics :light scattering methods and instruments for medical diagnosis. Society of Photo-optical Instrumentation E, Ed. Bellingham, Wash., SPIE, 2007.

    Google Scholar 

  52. Khaodhiar L, Dinh T, Schomacker KT, Panasyuk SV, Freeman JE, Lew R, Vo T, Panasyuk AA, Lima C, Giurini JM, Lyons TE, Veves A. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care. 2007;30:903–10.

    Article  PubMed  Google Scholar 

  53. Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care. 2009;32:2056–61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saiko G, Lombardi P, Au Y, Queen D, Armstrong D, Harding K. Hyperspectral imaging in wound care: a systematic review. Int Wound J. 2020;17:1840–56.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng. 2014;16:155–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gujrati V, Mishra A, Ntziachristos V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem Commun (Camb). 2017;53:4653–72.

    Article  CAS  PubMed  Google Scholar 

  57. Boulton AJ, Scarpello JH, Ward JD. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982;22:6–8.

    Article  CAS  PubMed  Google Scholar 

  58. Watkins PJ, Edmonds ME. Sympathetic nerve failure in diabetes. Diabetologia. 1983;25:73–7.

    Article  CAS  PubMed  Google Scholar 

  59. Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982;22:9–15.

    Article  CAS  PubMed  Google Scholar 

  60. Flynn MD, Tooke JE. Diabetic neuropathy and the microcirculation. Diabet Med. 1995;12:298–301.

    Article  CAS  PubMed  Google Scholar 

  61. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–74.

    Article  CAS  PubMed  Google Scholar 

  62. Stehouwer CD, Fischer HR, van Kuijk AW, Polak BC, Donker AJ. Endothelial dysfunction precedes development of microalbuminuria in IDDM. Diabetes. 1995;44:561–4.

    Article  CAS  PubMed  Google Scholar 

  63. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.

    Article  CAS  PubMed  Google Scholar 

  64. Parkhouse N, Le Quesne PM. Impaired neurogenic vascular response in patients with diabetes and neuropathic foot lesions. N Engl J Med. 1988;318:1306–9.

    Article  CAS  PubMed  Google Scholar 

  65. Walmsley D, Wiles PG. Early loss of neurogenic inflammation in the human diabetic foot. Clin Sci (Lond). 1979;1991(80):605–10.

    Google Scholar 

  66. Arora S, Smakowski P, Frykberg RG, Simeone LR, Freeman R, LoGerfo FW, Veves A. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care. 1998;21:1339–44.

    Article  CAS  PubMed  Google Scholar 

  67. Stansberry KB, Peppard HR, Babyak LM, Popp G, McNitt PM, Vinik AI. Primary nociceptive afferents mediate the blood flow dysfunction in non-glabrous (hairy) skin of type 2 diabetes: a new model for the pathogenesis of microvascular dysfunction. Diabetes Care. 1999;22:1549–54.

    Article  CAS  PubMed  Google Scholar 

  68. Caselli A, Rich J, Hanane T, Uccioli L, Veves A. Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology. 2003;60:297–300.

    Article  CAS  PubMed  Google Scholar 

  69. Hamdy O, Abou-Elenin K, LoGerfo FW, Horton ES, Veves A. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care. 2001;24:344–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Veves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Mezghani, I., Veves, A. (2023). Microcirculation of the Diabetic Foot. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics