Skip to main content

Urban Bats and their Parasites

  • Chapter
  • First Online:
Urban Bats

Abstract

Understanding host-parasite relationships in urban environments provides information critical for understanding bat ecology in anthropogenically altered landscapes. Although most current evidence comes from bat-virus systems, links between bats and their ectoparasites and endoparasites can provide key examples of how anthropogenic change affects bat health, roosting and foraging ecology, and, ultimately, bat conservation. This chapter examines the current state of knowledge and identifies potentially understudied aspects of urban bats and their parasites. Urbanisation can potentially modulate bat-parasite associations by affecting resource availability, ecophysiology, behaviour, and life history of bats. Urbanisation may also influence how these effects vary among parasites, bat species, and bat age classes. We distinguish between the effects of urbanisation in relation to ectoparasites and endoparasites, with one illustrative case study of each. The first case study examines ectoparasites of little brown bats (Myotis lucifugus) along an urban-rural gradient. It found some indications that M. lucifugus were more heavily parasitised in the city, likely because this was where the bats were most abundant and because ectoparasitism often rises along with host population density. The second case study investigates how anthropogenic habitat disturbance contributes to shifting helminth communities in big brown bats (Eptesicus fuscus). Land cover categories with more intense human activities were most likely to have similar helminth communities, likely because worms that parasitise more ecologically sensitive, intermediate hosts are more prone to extirpation with increasing anthropogenic disturbance. Finally, we conclude by suggesting that the tightly linked nature of the host-parasite relationship provides unique opportunities to address key urban ecology questions related to host foraging and roosting in urban areas, host-vector contact rates in disturbed habitat, and host susceptibility in response to anthropogenic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Zelmer DA (1998) An evolutionary definition of parasitism. Int J Parasitol 28(3):531–533

    Article  CAS  Google Scholar 

  2. Frick WF, Kingston T, Flanders J (2020) A review of the major threats and challenges to global bat conservation. Ann N Y Acad Sci 1469(1):5–25

    Article  Google Scholar 

  3. Murray MH et al (2019) City sicker? A meta-analysis of wildlife health and urbanization. Front Ecol Environ 17(10):575–583

    Article  Google Scholar 

  4. Williams NSG et al (2006) Range expansion due to urbanization: increased food resources attract grey-headed flying-foxes (Pteropus poliocephalus) to Melbourne. Austral Ecol 31(2):190–198

    Article  Google Scholar 

  5. Paez DJ et al (2018) Optimal foraging in seasonal environments: implications for residency of Australian flying foxes in food-subsidized urban landscapes. Philos Trans R Soc B, Biol Sci 373(1745)

    Google Scholar 

  6. Plowright RK et al (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc R Soc B Biol Sci 278(1725):3703–3712

    Article  Google Scholar 

  7. Webber QMR, Willis CKR (2016) Sociality, parasites, and pathogens in bats. In: Ortega J (ed) Sociality in bats. Springer International Publishing, Cham, pp 105–139

    Chapter  Google Scholar 

  8. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: a review. Mamm Biol 80(3):205–212

    Article  Google Scholar 

  9. Ancillotto L, Tomassini A, Russo D (2016) The fancy city life: Kuhl’s pipistrelle, Pipistrellus kuhlii, benefits from urbanisation. Wildl Res 42(7):598–606

    Article  Google Scholar 

  10. Coleman JL, Barclay RMR (2011) Influence of urbanization on demography of little brown bats (Myotis lucifugus) in the prairies of North America. PLoS One 6(5):e20483

    Article  CAS  Google Scholar 

  11. Zahn A, Rupp D (2004) Ectoparasite load in European vespertilionid bats. J Zool 262(4):383–391

    Article  Google Scholar 

  12. Korine C et al (2017) The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat. Parasitol Res 116(9):2517–2526

    Article  Google Scholar 

  13. Serieys LEK et al (1871) Urbanization and anticoagulant poisons promote immune dysfunction in bobcats. Proc R Soc B Biol Sci 2018(285):20172533

    Google Scholar 

  14. Marshall AG (1982) Ecology of insects Ectoparasitic on bats. In: Kunz TH (ed) Ecology of bats. Plenum Publishing Corporation, New York, pp 369–401

    Chapter  Google Scholar 

  15. Nunes H, Rocha FL, Cordeiro-Estrela P (2017) Bats in urban areas of Brazil: roosts, food resources and parasites in disturbed environments. Urban Ecosyst 20(4):953–969

    Article  Google Scholar 

  16. Bergeson SM, Holmes JB, O’Keefe JM (2020) Indiana bat roosting behavior differs between urban and rural landscapes. Urban Ecosyst 23(1):79–91

    Article  Google Scholar 

  17. Lim ZX et al (2020) Ecology of bat flies in Singapore: a study on the diversity, infestation bias and host specificity (Diptera: Nycteribiidae). Int J Parasitol Parasites Wildl 12:29–33

    Article  Google Scholar 

  18. Webber QMR, Czenze ZJ, Willis CKR (2015) Host demographic predicts ectoparasite dynamics for a colonial host during pre-hibernation mating. Parasitology 142(10):1260–1269

    Article  Google Scholar 

  19. Lourenço S, Palmeirim JM (2008) Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitol Res 104(1):127

    Article  Google Scholar 

  20. Pilosof S et al (2012) Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PLoS One 7(7):e41487

    Article  CAS  Google Scholar 

  21. Buczek A et al (2014) Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in South-Western Poland. Parasit Vectors 7(1):562

    Article  Google Scholar 

  22. Ruiz SR et al (2019) Metal and metalloid exposure and oxidative status in free-living individuals of Myotis daubentonii. Ecotoxicol Environ Saf 169:93–102

    Article  CAS  Google Scholar 

  23. McMahon TA, Rohr JR, Bernal XE (2017) Light and noise pollution interact to disrupt interspecific interactions. Ecology 98(5):1290–1299

    Article  Google Scholar 

  24. Mollentze N, Streicker DG (2020) Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc Natl Acad Sci 117(17):9423

    Article  CAS  Google Scholar 

  25. Gay N et al (2014) Parasite and viral species richness of southeast Asian bats: fragmentation of area distribution matters. Int J Parasitol Parasites Wildl 3(2):161–170

    Article  Google Scholar 

  26. Cheng TL et al (2021) The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv Biol

    Google Scholar 

  27. Mustachio A, Bodri MS (2019) Can ectoparasites be implicated in the spread of Pseudogymnoascus destructans? J Wildl Dis 55(3):704–706

    Article  CAS  Google Scholar 

  28. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22(2):95–102

    Article  Google Scholar 

  29. Lewis SE (1995) Roost fidelity of bats: a review. J Mammal 76(2):481–496

    Article  Google Scholar 

  30. Reinhardt K, Siva-Jothy MT (2007) Biology of the bed bugs (Cimicidae). Annu Rev Entomol 52(1):351–374

    Article  CAS  Google Scholar 

  31. Christe P et al (2003) Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? J Anim Ecol 72(5):866–872

    Article  Google Scholar 

  32. Azami-Conesa I et al (2020) First detection of Leishmania infantum in common urban bats Pipistrellus pipistrellus in Europe. Res Vet Sci 132:172–176

    Article  CAS  Google Scholar 

  33. Acosta IDCL et al (2014) Survey of Trypanosoma and Leishmania in wild and domestic animals in an Atlantic rainforest fragment and surroundings in the state of Espírito Santo. Braz J Med Entomol 51(3):686–693

    Article  Google Scholar 

  34. Cottontail VM, Wellinghausen N, Kalko EKV (2009) Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panamá. Parasitology 136(10):1133–1145

    Article  CAS  Google Scholar 

  35. Millán J et al (2014) Absence of Leishmania infantum in cave bats in an endemic area in Spain. Parasitol Res 113(5):1993–1995

    Article  Google Scholar 

  36. Rosário ING et al (2016) Evaluating the adaptation process of sandfly fauna to anthropized environments in a leishmaniasis transmission area in the Brazilian Amazon. J Med Entomol 54(2):450–459

    Google Scholar 

  37. Lampo M et al (2000) A possible role of bats as a blood source for the Leishmania vector Lutzomyia longipalpis (Diptera: Psychodidae). AJTHAB 62(6):718–719

    CAS  Google Scholar 

  38. Schiller SE, Webster KN, Power M (2016) Detection of Cryptosporidium hominis and novel cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. Infect Genet Evol 44:254–260

    Article  Google Scholar 

  39. Islam S et al (2020) Detection of hemoparasites in bats, Bangladesh. J Threat Taxa 12(10):16245–16250

    Article  Google Scholar 

  40. Holz PH et al (2019) Polychromophilus melanipherus and haemoplasma infections not associated with clinical signs in southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Int J Parasitol Parasites Wildl 8:10–18

    Article  Google Scholar 

  41. Warburton EM, Kohler SL, Vonhof MJ (2016) Patterns of parasite community dissimilarity: the significant role of land use and lack of distance-decay in a bat–helminth system. Oikos 125(3):374–385

    Article  Google Scholar 

  42. Etges FJ (1960) On the life history of Prosthodendrium (Acanthatrium) anaplocami n. sp. (Trematoda: Lecithodendriidae). J Parasitol 46(2):235–240

    Article  CAS  Google Scholar 

  43. Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16(2):149–159

    Article  Google Scholar 

  44. Allen LC et al (2009) Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J Comp Physiol B: Biochem Syst Environ Physiol 179(3):315–323

    Article  Google Scholar 

  45. Rohr JR et al (2020) Towards common ground in the biodiversity–disease debate. Nat Ecol Evol 4(1):24–33

    Article  Google Scholar 

  46. LoGiudice K et al (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci 100(2):567–571

    Article  CAS  Google Scholar 

  47. Rubio AV, Ávila-Flores R, Suzán G (2014) Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas. EcoHealth 11(4):526–533

    Article  Google Scholar 

  48. Ezenwa VO et al (2007) Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector-Borne Zoonotic Dis 7(2):173–180

    Article  Google Scholar 

  49. Jacquin L et al (2013) Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba livia. J Avian Biol 42(1):11–15

    Article  Google Scholar 

  50. Sures B et al (2017) Parasite responses to pollution: what we know and where we go in ‘environmental parasitology’. Parasit Vectors 10(1):65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warburton, E.M., Swerdfeger, E., Coleman, J.L. (2022). Urban Bats and their Parasites. In: Moretto, L., Coleman, J.L., Davy, C.M., Fenton, M.B., Korine, C., Patriquin, K.J. (eds) Urban Bats. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-13173-8_4

Download citation

Publish with us

Policies and ethics