Abstract
Due to the lack of high-end graphics or tensor processing units, previously, deep neural networks could not be implemented as state-of-the-art Artificial Intelligence (AI) algorithms. Rather, linear models were preferred, and they were easy to understand and interpret. Things started changing with the advent of more advanced processing units, in the last decade, when the algorithms took on real-world problems. The models began getting bigger and better.
This is a preview of subscription content, access via your institution.
Buying options
References
Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26 (2010). https://doi.org/10.1093/bioinformatics/btq134
Amann, J., Blasimme, A., Vayena, E., et al.: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2 (2020). https://doi.org/10.1186/s12911-020-01332-6
Amoroso, N., Pomarico, D., Fanizzi, A., et al.: A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Appl. Sci. (Switzerland) 11 (2021). https://doi.org/10.3390/app11114881
Aslam, A., Khan, E., Beg, M.M.S.: Improved edge detection algorithm for brain tumor segmentation. Procedia Comput. Sci. (2015)
Bach, S., Binder, A., Montavon, G., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0130140
Baker, A.: Book: crossing the quality chasm: a new health system for the 21st century. BMJ 323 (2001). https://doi.org/10.1136/bmj.323.7322.1192
Bartolo, M., Roberts, A., Welbl, J., et al.: Beat the AI: investigating adversarial human annotation for reading comprehension. Trans. Assoc. Comput. Linguist. 8 (2020). https://doi.org/10.1162/tacl_a_00338
Bhattacharya, S., Lane, N.D.: From smart to deep: Robust activity recognition on smartwatches using deep learning. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops 2016 (2016)
Calmon, F.P., Wei, D., Vinzamuri, B., et al.: Optimized pre-processing for discrimination prevention. In: Advances in Neural Information Processing Systems (2017)
Caruana, R., Lou, Y., Gehrke, J., et al.: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015)
Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: Proceedings—2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018 (2018)
Chaudhari, A.S., Fang, Z., Kogan, F., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. (2018). https://doi.org/10.1002/mrm.27178
Chen, H., Engkvist, O., Wang, Y., et al.: The rise of deep learning in drug discovery. Drug Discov. Today 23 (2018)
Chen, H., Lundberg, S., Lee, S.I.: Explaining models by propagating shapley values of local components. In: Studies in Computational Intelligence (2021)
Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15 (2018). https://doi.org/10.1098/rsif.2017.0387
Chittajallu, D.R., Dong, B., Tunison, P., et al.: XAI-CBIR: explainable AI system for content based retrieval of video frames from minimally invasive surgery videos. In: Proceedings—International Symposium on Biomedical Imaging (2019)
Cleverley, J., Piper, J., Jones, M.M.: The role of chest radiography in confirming covid-19 pneumonia. BMJ 370 (2020)
Cohen, I.G.: Informed consent and medical artificial intelligence: what to tell the patient? SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3529576
Couteaux, V., Nempont, O., Pizaine, G., Bloch, I.: Towards interpretability of segmentation networks by analyzing deepDreams. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2019)
Coutts, L.V., Plans, D., Brown, A.W., Collomosse, J.: Deep learning with wearable based heart rate variability for prediction of mental and general health. J. Biomed. Inform. 112 (2020). https://doi.org/10.1016/j.jbi.2020.103610
Cukier, R.I., Fortuin, C.M., Shuler, K.E., et al.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 59 (1973). https://doi.org/10.1063/1.1680571
Cutillo, C.M., Sharma, K.R., Foschini, L., et al.: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency. NPJ Digit. Med. 3 (2020)
Dash, S., Günlük, O., Wei, D.: Boolean decision rules via column generation. In: Advances in Neural Information Processing Systems (2018)
Deeks, A.: The judicial demand for explainable artificial intelligence. C. Law Rev. 119 (2019)
Dhurandhar, A., Chen, P.Y., Luss, R., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: Advances in Neural Information Processing Systems (2018)
Dindorf, C., Konradi, J., Wolf, C., et al.: Classification and automated interpretation of spinal posture data using a pathology-independent classifier and explainable artificial intelligence (Xai). Sensors 21 (2021). https://doi.org/10.3390/s21186323
Dong, D., Tang, Z., Wang, S., et al.: The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. 14 (2021). https://doi.org/10.1109/RBME.2020.2990959
Elisa Celis, L., Huang, L., Keswani, V., Vishnoi, N.K.: Classification with fairness constraints: a meta-algorithm with provable guarantees. In: FAT* 2019—Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency (2019)
El-Sappagh, S., Alonso, J.M., Islam, S.M.R., et al.: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 11 (2021). https://doi.org/10.1038/s41598-021-82098-3
Esteva, A., Robicquet, A., Ramsundar, B., et al.: A guide to deep learning in healthcare. Nat. Med. 25 (2019)
Everingham et al. 2010Everingham, M., van Gool, L., Williams, C.K.I., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88 (2010). https://doi.org/10.1007/s11263-009-0275-4
Feldman, M., Friedler, S.A., Moeller, J., et al.: Certifying and removing disparate impact. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015)
Fuhrman, J.D., Gorre, N., Hu, Q., et al.: A review of explainable and interpretable AI with applications in COVID-19 imaging. Med. Phys. 49 (2022)
Garisto, D.: Google AI beats top human players at strategy game StarCraft II. Nature (2019). https://doi.org/10.1038/d41586-019-03298-6
Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35 (2016)
Hassan, S.A., Sayed, M.S., Abdalla, M.I., Rashwan, M.A.: Breast cancer masses classification using deep convolutional neural networks and transfer learning. Multimed. Tools Appl. 79 (2020). https://doi.org/10.1007/s11042-020-09518-w
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016)
Higgins, D., Madai, V.I.: From bit to bedside: a practical framework for artificial intelligence product development in healthcare. Adv. Intell. Syst. 2 (2020). https://doi.org/10.1002/aisy.202000052
Hind, M., Wei, D., Campbell, M., et al.: TED: teaching AI to explain its decisions. In: AIES 2019—Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019)
Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability methods in deep neural networks. In: Advances in Neural Information Processing Systems (2019)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998). https://doi.org/10.1109/34.730558
Jin, C., Chen, W., Cao, Y., et al.: Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-020-18685-1
Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: Proceedings—IEEE International Conference on Data Mining, ICDM (2012)
Kavya, R., Christopher, J., Panda, S., Lazarus, Y.B.: Machine learning and XAI approaches for allergy diagnosis. Biomed. Signal Process. Control 69 (2021). https://doi.org/10.1016/j.bspc.2021.102681
Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering: auditing and learning for subgroup fairness. In: 35th International Conference on Machine Learning, ICML 2018 (2018)
Kermany, D.S., Goldbaum, M., Cai, W., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 (2018). https://doi.org/10.1016/j.cell.2018.02.010
Kim, B., Khanna, R., Koyejo, O.: Examples are not enough, learn to criticize! Criticism for interpretability. In: Advances in Neural Information Processing Systems (2016)
Kindermans, P.J., Schütt, K.T., Alber, M., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. In: 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings (2018)
Kletz, S., Schoeffmann, K., Husslein, H.: Learning the representation of instrument images in laparoscopy videos. Healthc. Technol. Lett. (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM (2017). https://doi.org/10.1145/3065386
Kuenzi, B.M., Park, J., Fong, S.H., et al.: Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38 (2020). https://doi.org/10.1016/j.ccell.2020.09.014
Kusner, M., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems (2017)
Lapuschkin, S., Binder, A., Montavon, G., et al.: Analyzing classifiers: fisher vectors and deep neural networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016)
Lapuschkin, S., Wäldchen, S., Binder, A., et al.: Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-019-08987-4
Lecun, Y., Bengio, Y., Hinton. G.: Deep learning. Nature (2015)
Lee, C.S., Wang, M.H., Yen, S.J., et al.: Human versus computer go: review and prospect [Discussion Forum]. IEEE Comput. Intell. Mag. 11 (2016). https://doi.org/10.1109/MCI.2016.2572559
Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions. In: EMNLP 2016—Conference on Empirical Methods in Natural Language Processing, Proceedings (2016)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems (2017)
Lundberg, S.M., Nair, B., Vavilala, M.S., et al.: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2 (2018). https://doi.org/10.1038/s41551-018-0304-0
Ma, K., Wang, J., Singh, V., et al.: Multimodal image registration with deep context reinforcement learning. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2017)
Marblestone, A.H., Wayne, G., Kording, K.P.: Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10 (2016). https://doi.org/10.3389/fncom.2016.00094
Mauldin, T.R., Canby, M.E., Metsis, V., et al.: Smartfall: a smartwatch-based fall detection system using deep learning. Sensors (Switzerland) 18 (2018). https://doi.org/10.3390/s18103363
Mei, X., Lee, H.C., Diao, K.Y., et al.: Artificial intelligence—enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26 (2020). https://doi.org/10.1038/s41591-020-0931-3
Miotto, R., Wang, F., Wang, S., et al.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19 (2017). https://doi.org/10.1093/bib/bbx044
Mordvintsev, A., Tyka, M., Olah, C.: Inceptionism: going deeper into neural networks, google research blog. In: Google Research Blog (2015)
Nweke, H.F., The, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 105 (2018)
Papanastasopoulos, Z., Samala, R.K., Chan, H.-P., et al.: Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI (2020)
Peng, J., Zou, K., Zhou, M., et al.: An explainable artificial intelligence framework for the deterioration risk prediction of hepatitis patients. J. Med. Syst. 45 (2021). https://doi.org/10.1007/s10916-021-01736-5
Pereira, S., Meier, R., Alves, V., et al.: Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2018)
Petsiuk, V., Das, A., Saenko, K.: RisE: randomized input sampling for explanation of black-box models. In: British Machine Vision Conference 2018, BMVC 2018 (2019)
Piccialli, F., di Somma, V., Giampaolo, F., et al.: A survey on deep learning in medicine: why, how and when? Inf. Fusion 66 (2021). https://doi.org/10.1016/j.inffus.2020.09.006
Plischke, E.: An effective algorithm for computing global sensitivity indices (EASI). Reliab. Eng. Syst. Saf. 95 (2010). https://doi.org/10.1016/j.ress.2009.11.005
Qiu, S., Joshi, P.S., Miller, M.I., et al.: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143 (2020). https://doi.org/10.1093/brain/awaa137
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (2018)
Richards, B.A., Lillicrap, T.P., Beaudoin, P., et al.: A deep learning framework for neuroscience. Nat. Neurosci. 22 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2015)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1 (2019)
Salehi, S., Abedi, A., Balakrishnan, S., Gholamrezanezhad, A.: Coronavirus disease 2019 (COVID-19) imaging reporting and data system (COVID-RADS) and common lexicon: a proposal based on the imaging data of 37 studies. Eur. Radiol. 30 (2020). https://doi.org/10.1007/s00330-020-06863-0
Saltelli, A., Ratto, M., Andres, T., et al.: Global sensitivity analysis: the primer (2008)
Sarkar, A., Vandenhirtz, J., Nagy, J., et al.: Identification of images of COVID-19 from chest X-rays using deep learning: comparing COGNEX VisionPro deep learning 1.0TM software with open source convolutional neural networks. SN Comput. Sci. 2 (2021). https://doi.org/10.1007/s42979-021-00496-w
Sarp, S., Kuzlu, M., Wilson, E., et al.: The enlightening role of explainable artificial intelligence in chronic wound classification. Electronics (Switzerland) 10 (2021). https://doi.org/10.3390/electronics10121406
Sayres, R., Taly, A., Rahimy, E., et al.: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 126 (2019). https://doi.org/10.1016/j.ophtha.2018.11.016
Schaefer, J., Lehne, M., Schepers, J., et al.: The use of machine learning in rare diseases: a scoping review. Orphanet J. Rare Dis. 15 (2020)
Schönberger, D.: Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. Int. J. Law Inf. Technol. 27 (2019). https://doi.org/10.1093/ijlit/eaz004
Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128 (2020). https://doi.org/10.1007/s11263-019-01228-7
Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: 34th International Conference on Machine Learning, ICML 2017 (2017)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: 2nd International Conference on Learning Representations, ICLR 2014—Workshop Track Proceedings (2014)
Singh, A., Mohammed, A.R., Zelek, J., Lakshminarayanan, V.: Interpretation of deep learning using attributions: application to ophthalmic diagnosis (2020)
Smith, J.A., Abhari, R.E., Hussain, Z., et al.: Industry ties and evidence in public comments on the FDA framework for modifications to artificial intelligence/machine learning-based medical devices: a cross sectional study. BMJ Open 10 (2020). https://doi.org/10.1136/bmjopen-2020-039969
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6
Sun, J., Darbehani, F., Zaidi, M., Wang, B.: SAUNet: shape attentive U-net for interpretable medical image segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2020)
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015)
Thompson, B., Baker, N.: Google AI beats humans at designing computer chips. Nature (2021). https://doi.org/10.1038/d41586-021-01558-y
van Molle, P., de Strooper, M., Verbelen, T., et al.: Visualizing convolutional neural networks to improve decision support for skin lesion classification. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2018)
Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)
Wang, L., Lin, Z.Q., Wong, A.: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-76550-z
Wang, S., Li, Z., Yu, Y., Xu, J.: Folding membrane proteins by deep transfer learning. Cell Syst. 5 (2017). https://doi.org/10.1016/j.cels.2017.09.001
Wehbe, R.M., Sheng, J., Dutta, S., et al.: DeepCOVID-XR: an artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large U.S. clinical data set. Radiology 299 (2021). https://doi.org/10.1148/RADIOL.2020203511
Wei, D., Dash, S., Gao, T., Günlük, O.: Generalized linear rule models. In: 36th International Conference on Machine Learning, ICML 2019 (2019)
Wen, D., Khan, S.M., Xu, A.J., et al.: Characteristics of publicly available skin cancer image datasets: a systematic review. Lancet Digit. Health 4 (2022)
Weng, S.F., Reps, J., Kai, J., et al.: Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12 (2017). https://doi.org/10.1371/journal.pone.0174944
Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps. Med. Image Anal. 60 (2020). https://doi.org/10.1016/j.media.2019.101619
Wu, G., Kim, M., Wang, Q., et al.: Unsupervised deep feature learning for deformable registration of MR brain images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2013)
Xia, H., Sun, W., Song, S., Mou, X.: Md-net: multi-scale dilated convolution network for CT images segmentation. Neural Process. Lett. 51 (2020). https://doi.org/10.1007/s11063-020-10230-x
Xiong, Z., Wang, R., Bai, H.X., et al.: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology 296 (2020). https://doi.org/10.1148/radiol.2020201491
Xu, J.: Distance-based protein folding powered by deep learning. Proc. Natl. Acad. Sci. U. S. A. 116 (2019). https://doi.org/10.1073/pnas.1821309116
Young, K., Booth, G., Simpson, B., et al.: Deep neural network or dermatologist? In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2019)
Zafar, M.B., Valera, I., Rodriguez, M.G., et al.: From parity to preference-based notions of fairness in classification. In: Advances in Neural Information Processing Systems (2017)
Zech, J.R., Badgeley, M.A., Liu, M., et al.: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 15 (2018). https://doi.org/10.1371/journal.pmed.1002683
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2014)
Zhang, K., Liu, X., Shen, J., et al.: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell (2020). https://doi.org/10.1016/j.cell.2020.04.045
Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating Unwanted Biases with Adversarial Learning. In: AIES 2018—Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (2018)
Zhou, B., Khosla, A., Lapedriza, A., et al.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sarkar, A. (2023). Explainable AI and Its Applications in Healthcare. In: Mehta, M., Palade , V., Chatterjee, I. (eds) Explainable AI: Foundations, Methodologies and Applications. Intelligent Systems Reference Library, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-031-12807-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-12807-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12806-6
Online ISBN: 978-3-031-12807-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)