Skip to main content

Short® Implants and TRINIA® Full-Arch Prostheses for the Rehabilitation of the Atrophic Maxilla

  • Chapter
  • First Online:
Implants and Oral Rehabilitation of the Atrophic Maxilla

Abstract

The 2022 European Academy for Osseointegration position paper on material selection for implant-supported restorations suggested that among all-ceramic materials, porcelain fused to zirconia cannot be considered as the first priority in full-arch prostheses, due to the high risk for framework and veneering material catastrophic fracture. Therefore, an evident need of new developments is warranted for increased longevity. Fiber-reinforced composite (TRINIA®)-milled frameworks presents modulus of elasticity (18 GPa) similar to that of cortical bone providing a less rigid environment to the implant/abutment/prostheses complex.

Rehabilitation of the severely atrophic maxilla is always an incredibly challenging task for both surgical and prosthetic clinicians. To avoid extensive surgical vertical and horizontal augmentation procedures, such as sinus lifts, in 2010, a prospective cohort study was initiated at our University Hospital with four 4.0 × 5.0 mm, anterior and posteriorly placed implants. As we had very good results, we also started to insert only three implants whereas the middle implant was inserted through the incisal foramen into the nasopalatine canal. In very extreme maxillary atrophies, we also started to insert only one implant in the middle of the maxilla according to the reports of the good results in the mandible. Considering the challenging anatomy of highly atrophic maxillae with minimal bone volumes and without complex and costly augmentation procedures, we can state that the initial use of four and subsequently three ultrashort Bicon locking taper implants shows after an extended observation period, equivalent results as standard long implants with complex augmentation methods. Additionally, implant placement in the incisive foramen and nasopalatine canal did not lead to any complication and seems to be a sound procedure. Much to the delight of needful patients, it seems practical to treat the very atrophic maxilla with only one implant for an implant-stabilized full-arch TRINA® prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar Y, Chand P, Arora V, et al. Comparison of rehabilitating missing mandibular first molars with implant- or tooth-supported prostheses using masticatory efficiency and patient satisfaction outcomes. J Prosthodont. 2017;26:376–80.

    Article  PubMed  Google Scholar 

  2. Chen ST, Buser D. Esthetic outcomes following immediate and early implant placement in the anterior maxilla--a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):186–215.

    Article  PubMed  Google Scholar 

  3. Schwarz F, Schar A, Nelson K, et al. Recommendations for implant-supported full-arch rehabilitations in edentulous patients: the oral reconstruction foundation consensus report. Int J Prosthodont. 2021;34:s8–s20.

    Article  PubMed  Google Scholar 

  4. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin Oral Implants Res. 2018;29(Suppl 16):184–98.

    Article  PubMed  Google Scholar 

  5. Pjetursson BE, Valente NA, Strasding M, Zwahlen M, Liu S, Sailer I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin Oral Implants Res. 2018;29(Suppl 16):199–214.

    Article  PubMed  Google Scholar 

  6. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel. Nature. 1975;258:703–4.

    Article  Google Scholar 

  7. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin N Am. 2011;55:333–52, ix.

    Article  PubMed  Google Scholar 

  8. Pieralli S, Kohal RJ, Rabel K, von Stein-Lausnitz M, Vach K, Spies BC. Clinical outcomes of partial and full-arch all-ceramic implant-supported fixed dental prostheses. A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 18):224–36.

    Article  PubMed  Google Scholar 

  9. Quinn JB, Quinn GD, Sundar V. Fracture toughness of veneering ceramics for fused to metal (PFM) and zirconia dental restorative materials. J Res Natl Inst Stand Technol. 2010;115:343–52.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messias A, Nicolau P, Guerra F. Different interventions for rehabilitation of the edentulous maxilla with implant-supported prostheses: an overview of systematic reviews. Int J Prosthodont. 2021;34:s63–84.

    Article  PubMed  Google Scholar 

  11. Conserva E, Menini M, Tealdo T, et al. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report. Int J Prosthodont. 2009;22:53–5.

    PubMed  Google Scholar 

  12. Menini M, Conserva E, Tealdo T, et al. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013;26:549–56.

    Article  PubMed  Google Scholar 

  13. Meyer G, Fanghanel J, Proff P. Morphofunctional aspects of dental implants. Ann Anat. 2012;194:190–4.

    Article  PubMed  Google Scholar 

  14. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28:44–56.

    Article  PubMed  Google Scholar 

  15. Silva NR, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J. Additive CAD/CAM process for dental prostheses. J Prosthodont. 2011;20:93–6.

    Article  PubMed  Google Scholar 

  16. Perea-Lowery L, Vallittu PK. Framework design and pontics of fiber-reinforced composite fixed dental prostheses - an overview. J Prosthodont Res. 2018;62:281–6.

    Article  PubMed  Google Scholar 

  17. Vallittu PK, Shinya A, Baraba A, et al. Fiber-reinforced composites in fixed prosthodontics-Quo vadis? Dent Mater. 2017;33:877–9.

    Article  PubMed  Google Scholar 

  18. Bonfante EA, Suzuki M, Carvalho RM, et al. Digitally produced fiber-reinforced composite substructures for three-unit implant-supported fixed dental prostheses. Int J Oral Maxillofac Implants. 2015;30:321–9.

    Article  PubMed  Google Scholar 

  19. Erkmen E, Meric G, Kurt A, Tunc Y, Eser A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: a 3D FEA study. J Mech Behav Biomed Mater. 2011;4:107–16.

    Article  PubMed  Google Scholar 

  20. Karasan D, Fehmer V, Ligoutsikou M, Srinivasan M, Sailer I. The influence of patient-related factors and material selection on the clinical outcomes of fixed and removable complete implant prostheses: an overview on systematic reviews. Int J Prosthodont. 2021;34:s46–62.

    Article  PubMed  Google Scholar 

  21. Ahmed KE, Li KY, Murray CA. Longevity of fiber-reinforced composite fixed partial dentures (FRC FPD)-systematic review. J Dent. 2017;61:1–11.

    Article  PubMed  Google Scholar 

  22. Gloria A, Ronca D, Russo T, et al. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J Appl Biomater Biomech. 2011;9:151–63.

    PubMed  Google Scholar 

  23. Tiu J, Belli R, Lohbauer U. R-curve behavior of a short-fiber reinforced resin composite after water storage. J Mech Behav Biomed Mater. 2020;104:103674.

    Article  PubMed  Google Scholar 

  24. Freilich MA, Meiers JC. Fiber-reinforced composite prostheses. Dent Clin North Am. 2004;48:viii–x, 545–62.

    Google Scholar 

  25. Ewers R. The incisal foramen as a means of insertion for one of three ultra-short implants to support a prosthesis for a severely atrophic maxilla - a short-term report. Heliyon. 2018;4:e01034.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seemann R, Marincola M, Seay D, Perisanidis C, Barger N, Ewers R. Preliminary results of fixed, fiber-reinforced resin bridges on four 4- x 5-mm ultrashort implants in compromised bony sites: a pilot study. J Oral Maxillofac Surg. 2015;73:630–40.

    Article  PubMed  Google Scholar 

  27. Seemann R, Wagner F, Marincola M, Ewers R. Fixed, fiber-reinforced resin bridges on 5.0-mm implants in severely atrophic mandibles: up to 5 years’ follow-up of a prospective cohort study. J Oral Maxillofac Surg. 2018;76:956–62.

    Article  PubMed  Google Scholar 

  28. Wagner F, Seemann R, Marincola M, Ewers R. Fiber-reinforced resin fixed prostheses on 4 short implants in severely atrophic maxillas: 1-year results of a prospective cohort study. J Oral Maxillofac Surg. 2018;76:1194–9.

    Article  PubMed  Google Scholar 

  29. Rayyan MM, Abdallah J, Segaan LG, Bonfante EA, Osman E. Static and fatigue loading of veneered implant-supported fixed dental prostheses. J Prosthodont. 2020;29:679–85.

    Article  PubMed  Google Scholar 

  30. de Oliveira Lino LF, Machado CM, de Paula VG, et al. Effect of aging and testing method on bond strength of CAD/CAM fiber-reinforced composite to dentin. Dent Mater. 2018;34:1690–701.

    Article  PubMed  Google Scholar 

  31. Suzaki N, Yamaguchi S, Hirose N, et al. Evaluation of physical properties of fiber-reinforced composite resin. Dent Mater. 2020;36:987–96.

    Article  PubMed  Google Scholar 

  32. Darvell BW. Materials science for dentistry. Woodhead Publishing; 2018.

    Google Scholar 

  33. Naert I, Quirynen M, van Steenberghe D, Darius P. A study of 589 consecutive implants supporting complete fixed prostheses. Part II: prosthetic aspects. J Prosthet Dent. 1992;68:949–56.

    Article  PubMed  Google Scholar 

  34. Chapman RJ. Principles of occlusion for implant prostheses: guidelines for position, timing, and force of occlusal contacts. Quintessence Int. 1989;20:473–80.

    PubMed  Google Scholar 

  35. Greco GD, Jansen WC, Landre Junior J, Seraidarian PI. Stress analysis on the free-end distal extension of an implant-supported mandibular complete denture. Braz Oral Res. 2009;23:182–9.

    Article  PubMed  Google Scholar 

  36. Jacques LB, Moura MS, Suedam V, Souza EA, Rubo JH. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses. Clin Oral Implants Res. 2009;20:737–41.

    Article  PubMed  Google Scholar 

  37. Bonfante EA, Suzuki M, Hirata R, Bonfante G, Fardin VP, Coelho PG. Resin composite repair for implant-supported crowns. J Biomed Mater Res B Appl Biomater. 2017;105(6):1481–9.

    Article  PubMed  Google Scholar 

  38. Wendler M, Belli R, Petschelt A, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33:99–109.

    Article  PubMed  Google Scholar 

  39. Rekow D, Thompson VP. Engineering long term clinical success of advanced ceramic prostheses. J Mater Sci Mater Med. 2007;18:47–56.

    Article  PubMed  Google Scholar 

  40. Muhlemann S, Benic GI, Fehmer V, Hammerle CHF, Sailer I. Clinical quality and efficiency of monolithic glass ceramic crowns in the posterior area: digital compared with conventional workflows. Int J Comput Dent. 2018;21:215–23.

    PubMed  Google Scholar 

  41. Sailer I, Benic GI, Fehmer V, Hammerle CHF, Muhlemann S. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures. J Prosthet Dent. 2017;118:43–8.

    Article  PubMed  Google Scholar 

  42. Branemark P, et al. Intra osseous anchorage of dental prostheses, experimental studies. Scand J Plast Reconstr Surg. 1969;3:81–100.

    PubMed  Google Scholar 

  43. Branemark P, et al. Osseointegrated implants in the treatment of the edentulous jaw: experience from a 10 year period. Scand J Plast Reconstruct Surg Suppl. 1977;16:1–132.

    Google Scholar 

  44. Ravidà A, Wang IC, Barootchi S, Askar H, Tavelli L, Gargallo-Albiol J, Wang HL. Meta-analysis of randomized clinical trials comparing clinical and patient-reported outcomes between extra-short (≤6 mm) and longer (≥10 mm) implants. J Clin Periodontol. 2019;46:118–42.

    Article  PubMed  Google Scholar 

  45. Lombardo G, Pighi J, Marincola M, Corrocher G, Simancas-Pallares M, Nocini PF. Cumulative success rate of short and ultrashort implants supporting single crowns in the posterior maxilla: a 3-year retrospective study. Int J Dent. 2017;2017:8434281. https://doi.org/10.1155/2017/8434281.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rameh S, Menhall A. Younes, key factors influencing short implant success. Oral Maxillofac Surg. 2020;24(3):263–75. https://doi.org/10.1007/s10006-020-00841-y. Epub 2020 Apr 23.

    Article  PubMed  Google Scholar 

  47. Felice P, Checchi L, Barausse C, Pistilli R, Sammartino G, Masi I, Ippolito DR, Esposito M. Posterior jaws rehabilitated with partial prostheses supported by 4.0 x 4.0 mm or by longer implants: one-year post-loading results from a multicenter randomised controlled trial. Eur J Oral Implantol. 2016;9:35–45.

    PubMed  Google Scholar 

  48. Pohl V, Thoma DS, Sporniak-Tutak K, Garcia-Garcia A, Taylor TD, Haas R, Hammerle CH. Short dental implants (6 mm) versus long dental implants (11-15 mm) in combination with sinus floor elevation procedures: 3-year results from a multicenter, randomized, controlled clinical trial. J Clin Periodontol. 2017;44:438–45.

    Article  PubMed  Google Scholar 

  49. Cavalcanti MC, Guirado TE, Sapata VM, Costa C, Pannuti CM, Jung RE, Cesar Neto JB. Maxillary sinus floor pneumatization and alveolar ridge resorption after tooth loss: a cross-sectional study. Braz Oral Res. 2018;32:e64.

    Article  PubMed  Google Scholar 

  50. Zuckerkandl E. Zur Morphologie des Gesichtsschädels. Stuttgart: Ferdinand Enke; 1877.

    Google Scholar 

  51. Tatum OH. Lecture presented to the Alabama Implant Congress. Alabama Implant Congress; 1976. https://doi.org/10.1111/cid.12136/full.

    Book  Google Scholar 

  52. Summers RB. The osteotome technique: part 3--less invasive methods of elevating the sinus floor. Compendium. 1994;15:698, 700, 702–4 passim, quiz 710.

    PubMed  Google Scholar 

  53. Ewers R. Maxilla sinus grafting with marine algae derived bone forming material: a clinical report of long-term results. J Oral Maxillofac Surg. 2005;63:1712–23.

    Article  PubMed  Google Scholar 

  54. Ewers R. Standard clinical situations – 4.7 edentulous maxilla. In: Ewers R, Lambrecht JT, editors. Oral implants: bioactivating concepts. Chicago: Quintessence Publishing; 2012. p. 329–56.

    Google Scholar 

  55. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants – a Cochrane systematic review. Eur J Oral Implantol. 2009;2:167–84.

    PubMed  Google Scholar 

  56. Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium. 1994;15(152):154–6, 158 passim; quiz 162.

    Google Scholar 

  57. Ali SA, Karthigeyan S, Deivanai M, Kumar A. Implant rehabilitation for atrophic maxilla: a review. J Indian Prosthodont Soc. 2014;14:196–207.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pérez-Martínez S, Martorell-Calatayud L, Peñarrocha-Oltra D, García-Mira B, Peñarrocha-Diago M. Indirect sinus lift without bone graft material: systematic review and meta- analysis. J Clin Exp Dent. 2015;7:e316–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ewers R, Marincola M, Morgan V, Perpetuini P, Wagner F, Seemann R. Der atrophe Oberkiefer und seine Versorgungsmöglichkeiten mit vier ultrakurzen Implantaten. Implant Dent. 2018;26(1):61–70.

    Google Scholar 

  60. Schwartz SR. Short implants. An answer to a challenging dilemma? In: Surgical and medical management of common oral problems Dym H. Dental Clinics of North America. 2020 64 2. https://doi.org/10.1016/j.cden.2019.11.001.

    Chapter  Google Scholar 

  61. Wagner F, Seemann R, Marincola M, Ewers R. Fixed, fiber- reinforced resin bridges on four short implants in severely atrophic maxillae: 1-year results of a prospective cohort study. J Oral Maxfac Surg. 2018;76:1194–9.

    Article  Google Scholar 

  62. Ewers R, Marincola M, Morgan V, Perpetuini P, Seemann R. “All on three” – Kunststoffprothesen auf drei Implantaten. Zm 108/13. 2018.

    Google Scholar 

  63. Görürgöz C Öztas B. Anatomic characteristics and dimensions of the nasopalatine canal: a radiographic study using cone-beam computed tomography. Folia Morphol. 2020. https://doi.org/10.5603/FM.a2020.0118.

  64. Ewers R. Reduktion der Implantatzahl im Oberkiefer bei kurzen Implantaten. Implantatinsertion ins Foramen incisivum – erste Ergebnisse. Implant Dent. 2018;26(4):415–25.

    Google Scholar 

  65. Al-Amery S, Nambiar P, Jamaludin M, John J, Ngeow W. Cone beam computed tomography assessment of the maxillary incisive canal and foramen: considerations of anatomical variations when placing immediate implants. PLoS One. 2015;10:e0117251.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Friedrich RE, Laumann F, Zrnc T, Assaf AT. The nasopalatine canal in adults on cone beam computed tomograms – a clinical study and review of the literature. In Vivo. 2015;29:467–86.

    PubMed  Google Scholar 

  67. Jayasinghe RM, Hettiarachchi PVKS, Fonseka MCN, Nanayakkara D, Jayasighe RD. Morphometric analysis of nasopalatine foramen in Sri Lankan population using CBCT. J Oral Biol Craniofac Res. 2020;10(2):238–40. https://www.sciencedirect.com/science/article/pii/S2212426819302593?via%3Dihub.

    Article  PubMed  Google Scholar 

  68. Ewers R. On-Demand-Webinar: Möglichkeiten und Grenzen beim Einsatz von kurzen und ultrakurzen Implantaten. 2018. https://www.dental-online-college.com/videos/?tx_ocevent_pi1%5Bdetail%5D=12623; letzter Zugriff. 08.11.2018.

  69. Leboucq H. Le canal nasopalatin chez l’homme. In: Arch Biol Paris. 1881;2:386–97.

    Google Scholar 

  70. Allard RH, de Vries K, van der Kwast WA. Persisting bilateral nasopalatine ducts: a developmental anomaly. Oral Surg Oral Med Oral Pathol. 1982;53:24–6.

    Article  PubMed  Google Scholar 

  71. Vollmer R, Vollmer M, Nimtschke U, Götz W, Schwab W. Bedeutung des Foramen incisivum bei Implantationen in der Prämaxilla. lmplantol J. 2018;12:14–20.

    Google Scholar 

  72. Bell WH. Revascularization and bone healing after anterior maxillary osteotomy: a study using adult rhesus monkeys. J Oral Surg. 1969;27:249–55.

    PubMed  Google Scholar 

  73. Härle F, Ewers R. Die Hufeisenosteotomie mit Knochen- interposition zur Erhöhung des Oberkieferkammes – eine im Experiment steckengebliebene Operationsmethode. Dtsch Zahnärztl Z. 1980;35:105–7.

    PubMed  Google Scholar 

  74. Yerit KC, Posch M, Guserl U, Turhani D, Schopper C, Wanschitz F, Wagner A, Watzinger F, Ewers R. Rehabilitation of the severely atrophied maxilla by horseshoe Le Fort I osteotomy (HLFO). Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:683–92.

    Article  PubMed  Google Scholar 

  75. Bodereau EF, Flores VY, Naldini P, Torassa D, Tortolini P. Clinical evaluation of the nasopalatine canal in implant-prosthetic treatment: a pilot study dent. Dent J (Basel). 2020;8:30. https://doi.org/10.3390/dj8020030.

    Article  PubMed  Google Scholar 

  76. de Mello JS, Faot F, Correa G, Chagas Júnior OL. Success rate and complications associated with dental implants in the incisive canal region: a systematic review. Int J Oral Maxillofac Surg. 2017;46:1584–91.

    Article  PubMed  Google Scholar 

  77. Ewers R, Perpetuini P, Morgan V, Marincola M, Wu R, Seemann R. TRINIA™—metal-free restorations. Implant Dent. 2017;1:2–7.

    Google Scholar 

  78. Kern M, Att W, Fritzer E, Kappel S, Luthardt RG, Mundt T, Reissmann DR, Rädel M, Stiesch M, Wolfart S, Passia N. Survival and complications of single dental implants in the edentulous mandible following immediate or delayed loading: a randomized controlled clinical trial. J Dent Res. 2018;97:163–70.

    Article  PubMed  Google Scholar 

  79. Asami M, Kanazawa M, Lam TV, Thu KM, Sato D, Minakuchi M. Preliminary study of clinical outcomes for single implant-retained mandibular overdentures. J Oral Sci. 2020;62(1):98–102.

    Article  PubMed  Google Scholar 

  80. Ewers R, Marincola M, Perpetuini P. Versorgung des atrophen Oberkiefers mit vier oder drei ultrakurzen Implantaten bzw. einem ultrakurzen Implantat. Implant Dent. 2020;28(4):327–42, Quintessenz Verlag Berlin.

    Google Scholar 

  81. Vandenbroucke JP, Von Elm E, Altman DG, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Gac Sanit. 2009;23:158, (in Spanish).

    PubMed  Google Scholar 

  82. Cawood JI, Howell RA. A classification of the edentulous jaws. Int J Oral Maxillofac Surg. 1988;17:232–6.

    Article  PubMed  Google Scholar 

  83. Ewers R, Marincola M, Perpetuini P, Seemann R, Morgan V, Wu R. Leichtgewicht im Praxistest-Restaurationen bei schwierigen Situationen und atrophen Kiefern. Z Oral Implant. 2017;1(17):28–36.

    Google Scholar 

  84. Ewers R. Pedicled Sandwich Osteotomy – surgical technique for vertical and horizontal alveolar bone deficiency. Vortrag auf dem International Bone Symposium in Implant Dentistry in San Francisco/USA am 30.3.2017.

    Google Scholar 

  85. Kern JS, Terheyden H, Wolfart S. Implantat-prothetische Versorgung des zahnlosen Oberkiefers. S3-Leitlinie. AWMF-Registernr. 083–010. 2017, Report No.: AWMF-Registernr. 083–010: AWMF.

    Google Scholar 

  86. Seemann R, Marincola M, Seay D, Perisanidis C, Barger N, Ewers R. Preliminary result of fixed, fiber-reinforced resin bridges on four 4- x 5- mm ultrashort implants in compromised bony sites: a pilot study. J Oral Maxillofac Surg. 2015;73:630–40.

    Article  PubMed  Google Scholar 

  87. Ewers R, Perpetuini P, Seemann R, De Witt T, Sarvan I, Coetzer M, Pisarik K. Atrophic maxillary ridges. In: Morgan VH, editor. The bicon short implant: a thirty-year perspective. Chicago: Quintessence Publishing; 2017. p. 199–213.

    Google Scholar 

  88. Kern JS, Kern T, Wolfart S, Heussen N. A systematic review and meta-analysis of removable and fixed implant-supported prostheses in edentulous jaws: post-loading implant loss. Clin Oral Implants Res. 2016;27:174–95.

    Article  PubMed  Google Scholar 

  89. Ewers R, Seemann R. TRINIA™ trio – “all-on-three” – metallfreie glasfaserverstärkte Kunststoffprothese auf drei ultrakurzen Bicon-Implantaten. Zahn Krone. 3/17:11–17.

    Google Scholar 

  90. Vazouras K, Barbisan de Souza A, Gholami H, Papaspyridakos P, Pagni S, Weber H-P. Effect of time in function on the predictability of short dental implants (≤6mm): a meta-analysis. J Oral Rehabilit. https://onlinelibrary.wiley.com/doi.org/10.1111/joor.12925.

  91. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Verlag von August Hirschwald; 1892.

    Google Scholar 

  92. Schlegel KA, Schmitt CH, Möst T. Implantate beim hochbetagten Patienten?! Fallserie hochbetagter Patienten Implantologie. 2020;28(2):157–66.

    Google Scholar 

  93. Knöfler W, Barth T, Graul R, Krampe D, Schmenger K. Beobachtung von 10.000 Implantaten über 20 Jahre-eine retrospektive Studie. Einfluß von Implantatlänge, durchmesser und -typ auf die Überlebensrate. Implant Dent. 2017;25:413–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Ewers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ewers, R., Bonfante, E.A. (2023). Short® Implants and TRINIA® Full-Arch Prostheses for the Rehabilitation of the Atrophic Maxilla. In: Rinaldi, M. (eds) Implants and Oral Rehabilitation of the Atrophic Maxilla. Springer, Cham. https://doi.org/10.1007/978-3-031-12755-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12755-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12754-0

  • Online ISBN: 978-3-031-12755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics