Skip to main content

Dynamic Navigation Systems for the Rehabilitation of the Atrophic Maxillae

  • Chapter
  • First Online:
Implants and Oral Rehabilitation of the Atrophic Maxilla

Abstract

The insertion of dental implants into the atrophic edentulous maxilla is a challenge due to the limited vertical height (resorption of the alveolar bone crest and pneumatization of the maxillary sinuses following the extraction of the upper molars) as well as low bone density in that area.

The use of computer-aided implantology (CAI) helps the clinician transfer the implant prosthetic digital plan to the jaw using the entire available native bone.

Two computer-aided approaches are possible: one, with more than 20 years of history, is static CAI, which is represented by a system connecting a virtual project with its own physical object represented by surgical guides used to perform both osteotomies and implant seating, and the other is called dynamic computer-aided implantology (DCAI). Dynamic CAI is also divided into two possible different approaches that are currently used: one is referred to as robotics and the other is referred to as augmented reality, in which the operator collocated at the center of the surgery belongs to the augmented reality.

It works like a Global Positioning System (GPS) by making a triangulation with two cameras, a contra angle handpiece, and the patient’s jaw.

In this manner, on the screen, the clinician can follow the real-time drilling and implant placement process with a minimally invasive approach using the entire native bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Branemark P-I, Adell R, Breine U, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3:81.

    PubMed  Google Scholar 

  2. Mecall R, Rosenfeld A. The influence of residual ridge resorption patterns on fixture placement and tooth position. Part I. Int J Periodontics Restorative Dent. 1991;11:8–23.

    PubMed  Google Scholar 

  3. Mecall R, Rosenfeld A. The influence of residual ridge resorption patterns on implant fixture placement and tooth position. Part II. Presurgical determination of prosthesis type and design. Int J Periodontics Restorative Dent. 1992;12:32–51.

    PubMed  Google Scholar 

  4. Mecall R, Rosenfeld A. Influence of residual ridge resorption patterns on fixture placement and tooth position, Part III: Presurgical assessment of ridge augmentation requirements. Int J Periodontics Restorative Dent. 1996;16:322–37.

    PubMed  Google Scholar 

  5. Rosenfeld AL, Mandelaris GA, Tardieu PB. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part I. Diagnostics, imaging and collaborative accountability. Int J Periodontics Restorative Dent. 2006;26(3):215–21.

    PubMed  Google Scholar 

  6. Rosenfeld AL, Mandelaris GA, Tardieu PB. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part II. Rapid prototype medical modeling and stereolithographic drilling guides requiring bone exposure. Int J Periodontics Restorative Dent. 2006;26(4):347–53.

    PubMed  Google Scholar 

  7. Rosenfeld AL, Mandelaris GA, Tardieu PB. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part III. Stereolithographic drilling guides that do not require bone exposure and the immediate delivery of teeth. Int J Periodontics Restorative Dent. 2006;26(5):493–9.

    PubMed  Google Scholar 

  8. Mandelaris GA, Rosenfeld AL, King S, Nevins ML. Computer guided implantology for precision implant positioning. Combining specialized stereolithographically generated drilling guides and surgical implant instrumentation. Int J Periodontics Restorative Dent. 2010;30(3):274–81.

    Google Scholar 

  9. Mallaya SM, White S. The nature of ionizing radiation and risks from maxillofacial cone beam computed tomography. In: Sarment D, editor. Cone beam computed tomography. Oral and maxillofacial diagnosis and applications. London: Wiley-Blackwell; 2014. p. 25–43.

    Google Scholar 

  10. Jacobson M. Technology and principles of cone beam computed tomography. In: Sarment D, editor. Cone beam computed tomography. Oral and maxillofacial diagnosis and applications. London: Wiley-Blackwell; 2014. p. 3–24.

    Google Scholar 

  11. Tyndall A, Brooks S. Selection criteria for dental implant site imaging. A position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:630–7.

    Article  PubMed  Google Scholar 

  12. Rios HF, Borgnakke WS, Benavides E. The use of cone-beam computed tomography in the management of the patient requiring dental implants: an American Academy of Periodontology best evidence review. J Periodontol. 2017;88(10):946–59.

    Article  PubMed  Google Scholar 

  13. Mandelaris GA, Scheyer ET, Evans M, Kim D, McAllister B, Nevins M, Rios H, Sarment D. American Academy of Periodontology’s best evidence consensus statement on selected oral applications for cone-beam computed tomography. J Periodontol. 2017;88(10):939–45.

    Article  PubMed  Google Scholar 

  14. Sarment D, Al-Shammari K, Kazor C. Stereolithographic surgical templates for placement of dental implants in complex cases. Int J Periodontics Restorative Dent. 2003;23:287–95.

    PubMed  Google Scholar 

  15. Sarment D, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guides. Int J Oral Maxillofac Implants. 2003;18:571–7.

    PubMed  Google Scholar 

  16. Tardieu P, Vrielinck L. Implantologieassistée par ordinateur: le programme SimPlant SurgiCaseTM et le SAFE System™. Casclinique: Miseen charge immédiate d’un bridge mandibulaire avec des implants transmuqueux. Implant. 2003;19:15–28.

    Google Scholar 

  17. Testori T, Robiony M, Parenti A, Luongo G, Rosenfeld AL, Ganz SD, Mandelaris GA, Del Fabbro M. Evaluation of accuracy and precision of a new guided surgery system: a multicenter clinical study. Int J Periodontics Restorative Dent. 2014;34(Suppl):s59–69.

    PubMed  Google Scholar 

  18. Pikos MA, Magyar CW, Llop DR. Guided full-arch immediate-function treatment modality for the edentulous and terminal dentition patient. Compend Contin Educ Dent. 2015;36(2):1–10.

    Google Scholar 

  19. Luebbers HT, Messmer P, Obwegeser JA, et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2008;26:109–16.

    Article  Google Scholar 

  20. Jayaratne YS, Zwahlen RA, Lo J, Tam SC, Cheung LK. Computer-aided maxillofacial surgery: an update. Surg Innov. 2010;17:217–25.

    Article  PubMed  Google Scholar 

  21. Block MS. Static and dynamic navigation for dental implant placement. J Oral Maxillofac Surg. 2016;74(2):231–3.

    Article  PubMed  Google Scholar 

  22. Somogyi-Ganss E, Holmes HI, Jokstd A. Accuracy of a novel prototype dynamic computer-assisted surgery system. Clin Oral Implants Res. 2015;26(8):882–90.

    Article  PubMed  Google Scholar 

  23. Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: a systematic review and meta-analysis. Clin Oral Implants Res. 2018 Oct;29(Suppl 16):416–35. https://doi.org/10.1111/clr.13346.

    Article  PubMed  Google Scholar 

  24. Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):25–42. https://doi.org/10.11607/jomi.2014suppl.g1.2.

    Article  PubMed  Google Scholar 

  25. Gunkel AR, Freysinger W, Thumfart WF. Experience with various 3-dimensional navigation systems in head and neck surgery. Arch Otolaryngol Head Neck Surg. 2000;126(3):390–5.

    Article  PubMed  Google Scholar 

  26. Siessegger M, Mischkowski RA, Schneider BT, Krug B, Klesper B, Zöller JE. Image-guided surgical navigation for removal of foreign bodies in the head and neck. J Craniomaxillofac Surg. 2001;29(6):321–5.

    Article  PubMed  Google Scholar 

  27. Eggers G, Haag C, Hassfeld S. Image-guided removal of foreign bodies. Br J Oral Maxillofac Surg. 2005 Oct;43(5):404–9.

    Article  PubMed  Google Scholar 

  28. Wanschitz F, Birkfellner W, Watzinger F, Schopper C, Patruta S, Kainberger F, Figl M, Kettenbach J, Bergmann H, Ewers R. Evaluation of accuracy of computer-aided intraoperative positioning of endosseous oral implants in the edentulous mandible. Clin Oral Implants Res. 2002;13(1):59–64.

    Article  PubMed  Google Scholar 

  29. Wagner A, Wanschitz F, Birkfellner W, Zauza K, Klug C, Schicho K, Kainberger F, Czerny C, Bergmann H, Ewers R. Computer-aided placement of endosseous oral implants in patients after ablative tumour surgery: assessment of accuracy. Clin Oral Implants Res. 2003;14(3):340–8.

    Article  PubMed  Google Scholar 

  30. Jorba-García A, Figueiredo R, González-Barnadas A, Camps-Font O, Valmaseda-Castellón E. Accuracy and the role of experience in dynamic computer guided dental implant surgery: an in-vitro study. Med Oral Patol Oral Cir Bucal. 2019;24(1):e76–83. https://doi.org/10.4317/medoral.22785.

    Article  PubMed  Google Scholar 

  31. Chen CK, Yuh DY, Huang RY, Fu E, Tsai CF, Chiang CY. Accuracy of implant placement with a navigation system, a laboratory guide, and freehand drilling. Int J Oral Maxillofac Implants. 2018;33(6):1213.

    Article  PubMed  Google Scholar 

  32. Block MS, Emery RW, Lank K, Ryan J. Implant placement accuracy using dynamic navigation. Int J Oral Maxillofac Implants. 2017;32(1):92–9. https://doi.org/10.11607/jomi.5004. Epub 19 Sep 2016.

    Article  PubMed  Google Scholar 

  33. Stefanelli LV, DeGroot BS, Lipton DI, Mandelaris GA. Accuracy of a dynamic dental implant navigation system in a private practice. Int J Oral Maxillofac Implants. 2019;34(1):205–13. https://doi.org/10.11607/jomi.6966. Epub 5 Dec 2018.

    Article  PubMed  Google Scholar 

  34. Sharan A, Madjiar D. Maxillary sinus pneumatization following extractions: a radiographic study. Int J Oral Maxillofac Implants. 2008;23(1):48–56.

    PubMed  Google Scholar 

  35. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–24.

    PubMed  Google Scholar 

  36. Ellegaard B, Kolsen-Petersen J, Baelum V. Implant therapy involving maxillary sinus lift in periodontally compromised patients. Clin Oral Implants Res. 1997;8(4):305–15.

    Article  PubMed  Google Scholar 

  37. Branemark PI, Adell R, Albrektsson T, Lekholm U, Lindstrom J, Rockler B. An experimental and clinical study of osseointegrated implants penetrating the nasal cavity and maxillary sinus. J Oral Maxillofac Surg. 1984;42(8):497–505. https://doi.org/10.1016/0278-2391(84)90008-9.

    Article  PubMed  Google Scholar 

  38. Felice P, Barausse C, Pistilli R, Ippolito DR, Esposito M. Short implants versus longer implants in vertically augmented posterior mandibles: result at 8 years after loading from a randomized controlled trial. Eur J Oral Implantol. 2018;11(4):385–95.

    PubMed  Google Scholar 

  39. Felice P, Barausse C, Pistilli V, Piattelli M, Ippolito DR, Esposito M. Posterior atrophic jaws rehabilitated with prostheses supported by 6 mm long × 4 mm wide implants or by longer implants in augmented bone. 3-year post-loading results from a randomized controlled trial. Eur J Oral Implantol. 2018;11(2):175–87.

    PubMed  Google Scholar 

  40. Fan T, Li Y, Deng WW, Wu T, Zhang W. Short implants (5-8 mm) versus longer implants (>8 mm) with sinus lifting in atrophic posterior maxilla: a meta-analysis of RCTs. Clin Implant Dent Relat Res. 2017;19(1):207–15.

    Article  PubMed  Google Scholar 

  41. Anitua E, Flores J, Flores C, Alkhraisat MH. Long-term outcomes of immediate loading of short implants: a controlled retrospective cohort study. Int J Oral Maxillofac Implants. 2016;31(6):1360–6.

    Article  PubMed  Google Scholar 

  42. Bechara S, Kubilius R, Veronesi G, Pires JT, Shibli JA, Mangano FG. Short (6-mm) dental implants versus sinus floor elevation and placement of longer (≥10 mm) dental implants: a randomized controlled trial with a 3-year follow-up. Clin Oral Implants Res. 2017;28:1097.

    Article  PubMed  Google Scholar 

  43. Chana H, Smith G, Bansal H, Zahra D. A retrospective cohort study of the survival rate of 88 zygomatic implants placed over an 18-year period. Int J Oral Maxillofac Implants. 2019;34(2):461–70.

    Article  PubMed  Google Scholar 

  44. Petrungaro PS, Kurtzman GM, Gonzales S, Villegas C. Zygomatic implants for the management of severe alveolar atrophy in the partial or completely edentulous maxilla. Compend Contin Educ Dent. 2018;39(9):636–45.

    PubMed  Google Scholar 

  45. Davó R, Felice P, Pistilli R, Barausse C, Marti-Pages C, Ferrer-Fuertes A, Ippolito DR, Esposito M. Immediately loaded zygomatic implants vs conventional dental implants in augmented atrophic maxillae: 1-year post-loading results from a multicentre randomised controlled trial. Eur J Oral Implantol. 2018;11(2):145–61.

    PubMed  Google Scholar 

  46. Baggi L, Capelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100(6):422–31.

    Article  PubMed  Google Scholar 

  47. Tulasne JF. Implant treatment of missing posterior dentition. In: Albrektson T, Zarb G, editors. The Brånemark osseointegrated implant. Chicago, IL: Quintessence; 1989. p. 103–58.

    Google Scholar 

  48. Tulasne JF. Osseointegrated fixtures in the pterygoid region. In: Worthington P, Brånemark PI, editors. Advanced osseointegration surgery, applications in the maxillofacial region. Chicago, IL: Quintessence; 1992. p. 182–8.

    Google Scholar 

  49. Uchida Y, Yamashita Y, Danjo A, Shibata K, Kuraoka A. Computed tomography and anatomical measurements of critical sites for endosseous implants in the pterygomaxillary region: a cadaveric study. Int J Oral Maxillofac Surg. 2017;46(6):798–804.

    Article  PubMed  Google Scholar 

  50. Rodríguez X, Lucas-Taulé E, Elnayef B, Altuna P, Gargallo-Albiol J, Peñarrocha Diago M. Hernandez-Alfaro F2. Anatomical and radiological approach to pterygoid implants: a cross-sectional study of 202 cone beam computed tomography examinations. Int J Oral Maxillofac Surg. 2016;45(5):636–40.

    Article  PubMed  Google Scholar 

  51. Stefanelli LV, Graziani U, Pranno N, Di Carlo S, Mandelaris GA. Accuracy of dynamic navigation surgery in the placement of pterygoid implants. Int J Periodontics Restorative Dent. 2020;40(6):825–34. https://doi.org/10.11607/prd.4605.

    Article  PubMed  Google Scholar 

  52. Bidra AS, Huynh-Ba G. Implants in the pterygoid region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2011;40(8):773–81.

    Article  PubMed  Google Scholar 

  53. Candel E, Peñarrocha D, Peñarrocha M. Rehabilitation of the atrophic posterior maxilla with pterygoid implants: a review. J Oral Implantol. 2012;38 Spec No:461–6.

    Article  PubMed  Google Scholar 

  54. Araujo RZ, Santiago Júnior JF, Cardoso CL, Benites Condezo AF, Moreira Júnior R, Curi MM. Clinical outcomes of pterygoid implants: systematic review and meta-analysis. J Craniomaxillofac Surg. 2019;47(4):651–60.

    Article  PubMed  Google Scholar 

  55. Graves SL. The pterygoid plate implant: a solution for restoring the posterior maxilla. Int J Periodontics Restorative Dent. 1994;14(6):512–23.

    PubMed  Google Scholar 

  56. Stefanelli LV, Mandelaris GA, Franchina A, Di Nardo D, Galli M, Pagliarulo M, Testarelli L, Di Carlo S, Gambarini G. Accuracy evaluation of 14 maxillary full arch implant treatments performed with Da Vinci Bridge: a case series. Materials (Basel). 2020;13(12):2806. https://doi.org/10.3390/ma13122806.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stefanelli, L.V., Mandelaris, G.A. (2023). Dynamic Navigation Systems for the Rehabilitation of the Atrophic Maxillae. In: Rinaldi, M. (eds) Implants and Oral Rehabilitation of the Atrophic Maxilla. Springer, Cham. https://doi.org/10.1007/978-3-031-12755-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12755-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12754-0

  • Online ISBN: 978-3-031-12755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics