Skip to main content

Integrating Modern Diagnostic Tools with Digital Engineering

  • Chapter
  • First Online:
Implants and Oral Rehabilitation of the Atrophic Maxilla

Abstract

The principal role of medical imaging is to provide valuable data for diagnoses. However, imaging systems have been exhibiting certain weaknesses regarding the generated visual representation and the further utilization of the acquired data.

Computer-aided design (CAD) is, nowadays, widely used for the design of various implants and, in general, for the development of medical devices. However, traditionally, there has been no direct, effective method to design based on real anatomical data.

Similarly, finite element analysis (FEA), an established numerical simulation method, has been shown to be applicable to numerous biomechanical applications for studying the function of anatomical systems. Nevertheless, although medical images can provide important information regarding the geometry and the material properties of various tissues, the communication of such information between various image modalities and the FEA software has been quite demanding.

Additive manufacturing (AM), a fast and accurate method of constructing the physical counterparts of CAD virtual models, has enormous potential in medical applications, for manufacturing anatomical replicas, product prototypes, or even actual implants, provided that it can also utilize the geometrical information of anatomical data.

The effective integration of medical imaging with digital engineering, namely, CAD, FEA, and AM, can provide a powerful method for the realistic modeling and simulation of various body structures, the design and development of implants, tools, and medical devices, and the diagnosis and treatment of various pathologies. For this purpose, the imaging principles, dose, protocols, and accuracy relevant to maxillofacial practice as well as the overall process for modeling the anatomy are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radon J. Uber die eestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeite. Ber Verh Sachs Akad Wiss Leipzig Math Phys. 1917;69:262–77.

    Google Scholar 

  2. Hounsfield GN. Computerised transverse axial scanning (tomography). Part 1: description of system. Br J Radiol. 1973;46:1016–22.

    Article  PubMed  Google Scholar 

  3. Tetel’baum SI. About a method of obtaining volume images with the help of x-rays. Bull Kiev Polytechnic Inst. 1957;22:154–60.

    Google Scholar 

  4. Korenblyum BI, Tetel’baum SI, Tyutin AA. About one scheme of tomography. Bull Inst Higher Educ Radiophys. 1958;1(3):151–7.

    Google Scholar 

  5. Cormack AM. Early two-dimensional reconstruction and recent topics stemming from it (Nobel Prize Lecture). Science. 1980;209:1482–6.

    Article  PubMed  Google Scholar 

  6. Lindley A. Practical image processing in C. Englewood Cliffs, NJ: Prentice Hall; 1983.

    Google Scholar 

  7. Tonkopi E, Duffy S, Abdolell M, Manos D. Diagnostic reference levels and monitoring practice can help reduce patient dose from CT examinations. Am J Roentgenol. 2017;208:1073–81. https://doi.org/10.2214/AJR.16.16361.

    Article  Google Scholar 

  8. Bauhs JA, Vrieze TJ, Primak AN, et al. CT dosimetry: comparison of measurement techniques and devices. Radiographics. 2008;28:245–53.

    Article  PubMed  Google Scholar 

  9. Widmann G, Torbica P, Verius M, Jaschke W. Röntgenstrahlenschutz kompakt. Informationen aus Orthod Kieferorthopädie. 2020;52:232–6. https://doi.org/10.1055/a-1200-5809.

    Article  Google Scholar 

  10. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. Am J Roentgenol. 2010;194:881–9. https://doi.org/10.2214/AJR.09.3462.

    Article  Google Scholar 

  11. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257:158–66. https://doi.org/10.1148/radiol.10100047.

    Article  PubMed  Google Scholar 

  12. Ludlow JB, Timothy R, Walker C, et al. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofacial Radiol. 2015;44:20140197.

    Article  Google Scholar 

  13. McCollough CH, Chen GH, Kalender W, et al. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. 2012;264:567–80. https://doi.org/10.1148/radiol.12112265.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duan X, Wang J, Christner JA, et al. Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. Am J Roentgenol. 2011;197:689–95. https://doi.org/10.2214/AJR.10.6061.

    Article  Google Scholar 

  15. Widmann G, Dalla Torre D, Hoermann R, et al. Ultralow-dose computed tomography imaging for surgery of midfacial and orbital fractures using ASIR and MBIR. Int J Oral Maxillofac Surg. 2015;44:441–6. https://doi.org/10.1016/j.ijom.2015.01.011.

    Article  PubMed  Google Scholar 

  16. Widmann G, Juranek D, Waldenberger F, et al. Influence of ultra-low-dose and iterative reconstructions on the visualization of orbital soft tissues on maxillofacial CT. Am J Neuroradiol. 2017;38:1630–5. https://doi.org/10.3174/ajnr.A5239.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al-Ekrish AA, Alzahrani A, Zaman MU, et al. Assessment of potential reduction in multidetector computed tomography doses using FBP and SAFIRE for detection and measurement of the position of the inferior alveolar canal. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129:65–71.e7. https://doi.org/10.1016/j.oooo.2019.09.002.

    Article  PubMed  Google Scholar 

  18. Al-Ekrish AA, Al-Shawaf R, Schullian P, et al. Validity of linear measurements of the jaws using ultralow-dose MDCT and the iterative techniques of ASIR and MBIR. Int J Comput Assist Radiol Surg. 2016;11:1791–801. https://doi.org/10.1007/s11548-016-1419-y.

    Article  PubMed  Google Scholar 

  19. Al-Ekrish AA, Al-Shawaf R, Alfaleh W, et al. Comparability of dental implant site ridge measurements using ultra-low-dose multidetector row computed tomography combined with filtered back-projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Oral Radiol. 2018;35(3):280–6. https://doi.org/10.1007/s11282-018-0350-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al-Ekrish AA, Alfadda SA, Ameen W, et al. Accuracy of computer-aided design models of the jaws produced using ultra-low MDCT doses and ASIR and MBIR. Int J Comput Assist Radiol Surg. 2018;13:1853–60. https://doi.org/10.1007/s11548-018-1809-4.

    Article  PubMed  Google Scholar 

  21. Widmann G, Fasser M, Schullian P, et al. Substantial dose reduction in modern multi-slice spiral computed tomography (MSCT)-guided craniofacial and skull base surgery. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren. 2012;184:136–42. https://doi.org/10.1055/s-0031-1281971.

    Article  Google Scholar 

  22. Eggers G, Klein J, Welzel T, Mühling J. Geometric accuracy of digital volume tomography and conventional computed tomography. Br J Oral Maxillofac Surg. 2008;46:639–44. https://doi.org/10.1016/j.bjoms.2008.03.019.

    Article  PubMed  Google Scholar 

  23. Loubele M, Maes F, Schutyser F, et al. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2006;102:225–34. https://doi.org/10.1016/j.tripleo.2005.10.039.

    Article  Google Scholar 

  24. Liang X, Lambrichts I, Sun Y, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: on 3D model accuracy. Eur J Radiol. 2010;75:270–4. https://doi.org/10.1016/j.ejrad.2009.04.016.

    Article  PubMed  Google Scholar 

  25. D’haese J, Van De Velde T, Elaut L, De Bruyn H. A prospective study on the accuracy of mucosally supported stereolithographic surgical guides in fully edentulous maxillae. Clin Implant Dent Relat Res. 2012;14:293–303. https://doi.org/10.1111/j.1708-8208.2009.00255.x.

    Article  PubMed  Google Scholar 

  26. Valente F, Schiroli G, Sbrenna A. Accuracy of computer-aided oral implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implants. 2009;24:234–42.

    PubMed  Google Scholar 

  27. Vasak C, Watzak G, Gahleitner A, et al. Computed tomography-based evaluation of template (NobelGuide TM)-guided implant positions: a prospective radiological study. Clin Oral Implants Res. 2011;22:1157–63. https://doi.org/10.1111/j.1600-0501.2010.02070.x.

    Article  PubMed  Google Scholar 

  28. Van Assche N, Van Steenberghe D, Quirynen M, Jacobs R. Accuracy assessment of computer-assisted flapless implant placement in partial edentulism. J Clin Periodontol. 2010;37:398–403. https://doi.org/10.1111/j.1600-051X.2010.01535.x.

    Article  PubMed  Google Scholar 

  29. Di Giacomo GA, da Silva JV, da Silva AM, et al. Accuracy and complications of computer-designed selective laser sintering surgical guides for flapless dental implant placement and immediate definitive prosthesis installation. J Periodontol. 2012;83:410–9. https://doi.org/10.1902/jop.2011.110115.

    Article  PubMed  Google Scholar 

  30. Eggers G, Senoo H, Kane G, Mühling J. The accuracy of image guided surgery based on cone beam computer tomography image data. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107(3):e41–8. https://doi.org/10.1016/j.tripleo.2008.10.022.

    Article  Google Scholar 

  31. Widmann G, Zangerl A, Schullian P, et al. Do image modality and registration method influence the accuracy of craniofacial navigation? J Oral Maxillofac Surg. 2012;70:2165–73. https://doi.org/10.1016/j.joms.2011.08.026.

    Article  PubMed  Google Scholar 

  32. Wagner A, Schicho K, Kainberger F, et al. Quantification and clinical relevance of head motion during computed tomography. Invest Radiol. 2003;38:733–41. https://doi.org/10.1097/01.rli.0000084889.92250.b0.

    Article  PubMed  Google Scholar 

  33. Al-Ekrish A, Widmann G, Alfadda S. Revised, computed tomography–based Lekholm and Zarb jawbone quality classification. Int J Prosthodont. 2018;31:342–5. https://doi.org/10.11607/ijp.5714.

    Article  PubMed  Google Scholar 

  34. Al-Ekrish AA, Alfadda SA, Tamimi D, et al. Do ultra-low multidetector computed tomography doses and iterative reconstruction techniques affect subjective classification of bone type at dental implant sites? Int J Prosthodont. 2018;31(5):465–70. https://doi.org/10.11607/ijp.5773.

    Article  PubMed  Google Scholar 

  35. Diamantopoulos P, et al. Integrating medical imaging, FEA, CAD and rapid prototyping. In: Middleton J, Jones MJ, Pande G, editors. Computer methods in biomechanics and biomedical engineering, vol. 3. Amsterdam: Gordon & Breach; 2001. p. 501–8.

    Google Scholar 

  36. Viceconti M, Zannoni C, Testi D, et al. A new method for the automatic mesh generation of bone segments from CT data. J Med Eng Technol. 1999;23(2):77–81.

    Article  PubMed  Google Scholar 

  37. Zannoni C, Cappello A, Viceconti M. Optimal CT scanning plan for long-bone 3-D reconstruction. IEEE Trans Med Imaging. 1998;17(4):663–6.

    Article  PubMed  Google Scholar 

  38. Diamantopoulos P, et al. Interfacing data between medical imaging, FEA, CAD and rapid prototyping: a practical methodology. In: Proceedings of the annual meeting of the Institute of Physics & Engineering in Medicine, Nottingham, September 1999. London: IPEM; 1999. p. 2.

    Google Scholar 

  39. Huiskes R, Hollister SJ. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng. 1993;115(4B):520–7.

    Article  PubMed  Google Scholar 

  40. Diamantopoulos P, et al. Medical rapid prototyping. In: UK Radiological Congress, London, May 2001. London: British Institute of Radiology; 2001. p. 52.

    Google Scholar 

  41. Diamantopoulos P. Medical imaging, CAD, FEA, and rapid prototyping: an integrated approach. Presented at measurements and simulations in orthopaedic biomechanics meeting, Royal College of Surgeons, London, June 1999; 1999.

    Google Scholar 

  42. Diamantopoulos P. Interfacing medical imaging data to FEA, CAD and rapid prototyping. Paper presented at the international conference of computer methods in biomechanics and biomedical engineering, Lisbon, October 1999; 1999.

    Google Scholar 

  43. Diamantopoulos P, et al. Introducing biomechanical computational methods into a hospital environment. In: Proceedings of the 12th conference of the European Society of Biomechanics, Dublin, August 2000. Royal Academy of Medicine; 2000. p. 405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlig Widmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diamantopoulos, P., Widmann, G. (2023). Integrating Modern Diagnostic Tools with Digital Engineering. In: Rinaldi, M. (eds) Implants and Oral Rehabilitation of the Atrophic Maxilla. Springer, Cham. https://doi.org/10.1007/978-3-031-12755-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12755-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12754-0

  • Online ISBN: 978-3-031-12755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics