Skip to main content

Nanobody-Based Delivery Systems for Diagnosis and Therapeutic Applications

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanobodies, also popularly known as nanomaterials, nanoparticles, etc., have found widespread applications in designing various smart delivery systems employed in disease diagnosis and therapeutic applications. Due to the rapid development in nanomaterial science and technology, such nanobodies are increasingly contributing to develop nanomedicines as well as nano delivery systems to treat ailments by achieving targeted and controlled delivery. These nanobodies have become the indispensable nanomaterials in disease diagnosis and treatment. This chapter deals with the introduction to such nanobodies, their contribution to overcome various challenges of drug delivery, exploitation of their optical properties for disease diagnosis, their use in nanomedicine formulations, and controlled delivery of therapeutics to targeted sites. The influence of shape, size, and architectures of such nanobodies on the efficacy of drug delivery is discussed. Their role in diagnosing diseases through bioimaging along with their response to external stimuli exploited for smart delivery is discussed. Finally, the challenges and prospects of these nanobodies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, et al. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - An illustration with firsthand examples. Acta Pharmacol Sin [Internet]. 2018;39(5):825–44. Available from: https://doi.org/10.1038/aps.2018.33

    Article  CAS  Google Scholar 

  2. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov [Internet]. 2021;20(2):101–24. Available from: https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  Google Scholar 

  3. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jo HL, Song YH, Park J, Jo EJ, Goh Y, Shin K, et al. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles. Nanoscale. 2015;7(46):19397–402.

    Article  CAS  PubMed  Google Scholar 

  5. Song YH, De R, Lee KT. Uptake of polyelectrolyte functionalized upconversion nanoparticles by Tau-aggregated neuron cells. Pharmaceutics. 2021;13(1):102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mani G. Stent-based drug-delivery systems: current challenges and future trends. Ther Deliv. 2013;4(9):1079–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ng JCK, Toong DWY, Ow V, Chaw SY, Toh H, Wong PEH, et al. Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation. Nanomedicine [Internet]. 2022; Available from: https://www.futuremedicine.com/doi/epub/10.2217/nnm-2021-0288

  8. Lee DH, Hernandez JM. d. la T. The newest generation of drug-eluting stents and beyond. Eur Cardiol Rev. 2018;13(1):54–9.

    Article  Google Scholar 

  9. Choi SW, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials (Basel). 2018;11(7):1125.

    Google Scholar 

  10. Cui W, Li J, Decher G. Self-assembled smart Nanocarriers for targeted drug delivery. Adv Mater. 2016;28(6):1302–11.

    Article  CAS  PubMed  Google Scholar 

  11. Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomol Ther. 2019;9(1):22.

    Google Scholar 

  12. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319–29.

    Article  CAS  PubMed  Google Scholar 

  13. De R, Jung M, Lee H. Designing microparticle-impregnated polyelectrolyte composite: the combination of ATRP, fast azidation, and click reaction using a single-catalyst, single-pot strategy. Int J Mol Sci. 2019;20(22):5582.

    Google Scholar 

  14. De R, Das B. Coiling/uncoiling behaviour of sodium polystyrenesulfonate in 2-ethoxyethanol-watermixed solvent media as probed using viscometry. Polym Int. 2014;63(11):1959–64.

    Article  CAS  Google Scholar 

  15. De R, Das B. Concentration, medium and salinity-induced shrinkage/expansion of poly(sodium styrenesulfonate) in 2-ethoxyethanol-water mixed solvent media as probed by viscosimetry. J Mol Struct. 2020;1199:126992.

    Article  Google Scholar 

  16. Tyagi N, Song YH, De R. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. J Drug Target. 2019;27(4):394–407.

    Google Scholar 

  17. Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm. 2017;518(1–2):220–227.

    Google Scholar 

  18. De R, Mahata MK, Kim K. Structure-based varieties of polymeric Nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv Sci. 2022;9(10):2105373.

    Google Scholar 

  19. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  20. Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol. 2013;87(6):1075–86.

    Article  CAS  PubMed  Google Scholar 

  21. Yang YQ, Lin WJ, Zhao B, Wen XF, Guo XD, Zhang LJ. Synthesis and physicochemical characterization of amphiphilic triblock copolymer brush containing pH-sensitive linkage for oral drug delivery. Langmuir. 2012;28(21):8251–9.

    Article  CAS  PubMed  Google Scholar 

  22. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.

    CAS  PubMed  Google Scholar 

  23. Wang X, Liu G, Hu J, Zhang G, Liu S. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated “traceless” crosslinking. Angew Chemie - Int Ed. 2014;53(12):3138–42.

    Article  CAS  Google Scholar 

  24. Li Y, Gao GH, Lee DS. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv Healthc Mater. 2013;2(3):388–417.

    Article  CAS  PubMed  Google Scholar 

  25. Ding J, Zhuang X, Xiao C, Cheng Y, Zhao L, He C, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. J Mater Chem. 2011;21(30):11383–91.

    Article  CAS  Google Scholar 

  26. Kousalová J, Etrych T. Polymeric nanogels as drug delivery systems. Physiol Res. 2018;67:s305–17.

    Article  PubMed  Google Scholar 

  27. Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC. Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Control Release [Internet]. 2011;152(1):57–66. Available from: https://doi.org/10.1016/j.jconrel.2011.02.029

    Article  CAS  PubMed  Google Scholar 

  28. Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nano. 2020;10(5):847.

    Google Scholar 

  29. Chauhan AS. Dendrimers for Drug Delivery. Molecules. 2018;23(4):938.

    Article  PubMed Central  Google Scholar 

  30. Jana A, Devi KSP, Maiti TK, Singh NDP. Perylene-3-ylmethanol: fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J Am Chem Soc. 2012;134(18):7656–9.

    Article  CAS  PubMed  Google Scholar 

  31. Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater Med [Internet]. 2020;1(March):32–47. Available from: https://doi.org/10.1016/j.smaim.2020.05.002

  32. Li W, Cao Z, Liu R, Liu L, Li H, Li X, et al. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells, Nanomedicine Biotechnol [Internet]. 2019;47(1):4222–33. Available from: https://doi.org/10.1080/21691401.2019.1687501

  33. Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater. 2019;31(10):1–23.

    Article  CAS  Google Scholar 

  34. Devi M, Awasthi S. Gold nanoparticles in drug delivery systems: therapeutic applications. AIP Conf Proc. 2019;2142(August)

    Google Scholar 

  35. Mahata MK, De R, Lee KT. Near-infrared-triggered upconverting nanoparticles for biomedicine applications. Biomedicine. 2021;9(7):1–25.

    Google Scholar 

  36. Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci [Internet]. 2014;19(2):49–55. Available from: https://doi.org/10.1016/j.cocis.2014.03.004

    Article  CAS  Google Scholar 

  37. Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today [Internet]. 2020;35:100972. Available from: https://doi.org/10.1016/j.nantod.2020.100972.

  38. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science (80- ). 2013;339(6122):971–5.

    Article  CAS  Google Scholar 

  39. Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42(3):1236–50.

    Article  CAS  PubMed  Google Scholar 

  40. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7(August):1–14.

    Google Scholar 

  41. Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic–inorganic nanohybrids for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):1–29.

    Article  Google Scholar 

  42. Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother [Internet]. 2020;131(September):110695. Available from: https://doi.org/10.1016/j.biopha.2020.110695

  43. Lei W, Yang C, Wu Y, Ru G, He X, Tong X, et al. Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. J Nanobiotechnol. 2022;20(1):1–21.

    Article  Google Scholar 

  44. Di Martino A, Guselnikova OA, Trusova ME, Postnikov PS, Sedlarik V. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs. Int J Pharm [Internet]. 2017;526(1–2):380–90. Available from: https://doi.org/10.1016/j.ijpharm.2017.04.061

    Article  Google Scholar 

  45. Liang P, Liu CJ, Zhuo RX, Cheng SX. Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery. J Mater Chem B. 2013;1(34):4243–50.

    Article  CAS  PubMed  Google Scholar 

  46. Kawamura A, Katoh T, Uragami T, Miyata T. Design of molecule-responsive organic-inorganic hybrid nanoparticles bearing cyclodextrin as ligands. Polym J. 2015;47(2):206–11.

    Article  CAS  Google Scholar 

  47. Colapicchioni V, Palchetti S, Pozzi D, Marini ES, Riccioli A, Ziparo E, et al. Killing cancer cells using nanotechnology: Novel poly(I:C) loaded liposome-silica hybrid nanoparticles. J Mater Chem B. 2015;3(37):7408–16.

    Article  CAS  PubMed  Google Scholar 

  48. Dehaini D, Fang RH, Luk BT, Pang Z, Hu CMJ, Kroll AV, et al. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8(30):14411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao F, Zhang J, Fu C, Xie X, Peng F, You J, et al. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine. 2017;12:4147–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater [Internet]. 2015;28:149–59. Available from: https://doi.org/10.1016/j.actbio.2015.09.032

  52. Zou S, Wang B, Wang C, Wang Q, Zhang L. Cell membrane-coated nanoparticles : research advances. Nanomedicine (Lond). 2020;15(6):625–41.

    Article  CAS  Google Scholar 

  53. Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  54. Jin J, Bhujwalla ZM. Biomimetic nanoparticles Camouflaged in cancer cell membranes and their applications in cancer theranostics. Front Oncol. 2020;9(January):1–11.

    Google Scholar 

  55. Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release [Internet]. 2017;264(February):102–11. Available from: https://doi.org/10.1016/j.jconrel.2017.08.027

    Article  CAS  Google Scholar 

  57. Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated Nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 2016;12(30):4056–62.

    Article  CAS  PubMed  Google Scholar 

  58. Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun [Internet]. 2021;12(1):1–12. Available from: https://doi.org/10.1038/s41467-021-26052-x

    Google Scholar 

  59. Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng C [Internet]. 2017;76:593–600. Available from: https://doi.org/10.1016/j.msec.2017.03.121

  60. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev [Internet]. 2010;62(1):28–41. Available from: https://doi.org/10.1016/j.addr.2009.10.003

    Article  CAS  Google Scholar 

  61. Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci. 2008;35(5):404–16.

    Article  CAS  PubMed  Google Scholar 

  62. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):1–19.

    Article  CAS  Google Scholar 

  63. Pasut G. Grand challenges in Nano-based drug delivery. Front Med Technol. 2019;1(December):1.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Willhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater [Internet]. 2016;1:160114. Available from: https://www.nature.com/articles/natrevmats201614

    Google Scholar 

  65. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9(JUL):1–14.

    Google Scholar 

  66. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett [Internet]. 2021;16(1). Available from: https://doi.org/10.1186/s11671-021-03628-6

  67. Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol. 2020;3(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm. 2013;10(3):793–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett [Internet]. 2021;16(1). Available from: https://doi.org/10.1186/s11671-021-03553-8

  71. Du M, Yang Z, Lu W, Wang B, Wang Q, Chen Z, et al. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul [Internet]. 2020;37(6):403–12. Available from: https://doi.org/10.1080/02652048.2020.1767224.

  72. Guan M, Ge J, Wu J, Zhang G, Chen D, Zhang W, et al. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy. Biomaterials [Internet]. 2016;103:75–85. Available from: https://doi.org/10.1016/j.biomaterials.2016.06.023

  73. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717–32.

    Article  CAS  PubMed  Google Scholar 

  74. Ruzycka-Ayoush M, Kowalik P, Kowalczyk A, Bujak P, Nowicka AM, Wojewodzka M, et al. Quantum dots as targeted doxorubicin drug delivery nanosystems. Cancer Nanotechnol [Internet]. 2021;12(1):1–27. Available from: https://doi.org/10.1186/s12645-021-00077-9

  75. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39–50.

    Article  CAS  Google Scholar 

  76. Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-based strategies against drug resistance in tumor chemotherapy. Front Bioeng Biotechnol. 2021;9(December):798882.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ke L, Li Z, Fan X, Loh XJ, Cheng H, Wu YL, et al. Cyclodextrin-based hybrid polymeric complex to overcome dual drug resistance mechanisms for cancer therapy. Polymers (Basel). 2021;13(8):1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu M, Zhang CY, Wu J, Zhou H, Bai R, Shen Z, et al. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS Appl Mater Interfaces. 2019;11:5701–13.

    Article  CAS  PubMed  Google Scholar 

  79. Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y, et al. A simple dual-pH responsive prodrug-based polymeric micelles for drug delivery. ACS Appl Mater Interfaces. 2016;8(27):17109–17.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z, Li X, Wang D, Zou Y, Qu X, He C, et al. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater [Internet]. 2017;62:144–56. Available from: https://doi.org/10.1016/j.actbio.2017.08.027

  81. Huo Q, Zhu J, Niu Y, Shi H, Gong Y, Li Y, et al. PH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine. 2017;12:8631–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tian H, Luo Z, Liu L, Zheng M, Chen Z, Ma A, et al. Cancer cell membrane-biomimetic oxygen Nanocarrier for breaking hypoxia-induced Chemoresistance. Adv Funct Mater. 2017;27(38):1–7.

    Article  Google Scholar 

  83. Song L, Jiang Q, Liu J, Li N, Liu Q, Dai L, et al. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale. 2017;9(23):7750–4.

    Article  CAS  PubMed  Google Scholar 

  84. Li L, He S, Yu L, Elshazly EH, Wang H, Chen K, et al. Codelivery of DOX and siRNA by folate-biotin-quaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells. Drug Deliv [Internet]. 2019;26(1):499–508. Available from: https://doi.org/10.1080/10717544.2019.1606363.

  85. Yang Y, Wang L, Wan B, Gu Y, Li X. Optically active nanomaterials for bioimaging and targeted therapy. Front Bioeng Biotechnol. 2019;7(November):320.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, et al. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021;3(10):2679–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wen J, Xu Y, Li H, Lu A, Sun S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun. 2015;51(57):11346–58.

    Article  CAS  Google Scholar 

  88. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR. Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep. 2013;3:1473.

    Google Scholar 

  89. Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging graphical abstract HHS public access. Adv Drug Deliv Rev [Internet]. 2016;105:242–54. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039069/pdf/nihms793159.pdf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E. Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater [Internet]. 2013;9(4):6208–17. Available from: https://doi.org/10.1016/j.actbio.2012.12.010.

  91. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal ORMOSIL nanoparticles. ACS Nano. 2010;4(2):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gomes MC, Cunha Â, Trindade T, Tomé JPC. The role of surface functionalization of silica nanoparticles for bioimaging. J Innov Opt Health Sci. 2016;9(4):1–16.

    Article  Google Scholar 

  93. Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015;44(6):1302–17.

    Article  CAS  PubMed  Google Scholar 

  94. Shin K, Song YH, Goh Y, Lee KT. Two-dimensional and three-dimensional single particle tracking of upconverting nanoparticles in living cells. Int J Mol Sci. 2019;20(6):1424.

    Google Scholar 

  95. Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–834.

    Article  CAS  PubMed  Google Scholar 

  96. Yan L, Zhang Y, Xu B, Tian W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale. 2016;8(5):2471–87.

    Article  CAS  PubMed  Google Scholar 

  97. Sun J, Zhang Q, Dai X, Ling P, Gao F. Engineering fluorescent semiconducting polymer nanoparticles for biological applications and beyond. Chem Commun. 2021;57(16):1989–2004.

    Article  CAS  Google Scholar 

  98. Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and Photoacoustics. Adv Mater. 2018;30(49):1801778.

    Article  Google Scholar 

  99. Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol. 2014;32(4):373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–68.

    Article  CAS  PubMed  Google Scholar 

  101. Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale. 2017;9(19):6204–18.

    Article  CAS  PubMed  Google Scholar 

  102. Qiu X, You X, Chen X, Chen H, Dhinakar A, Liu S, et al. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int J Nanomedicine. 2017;12:4349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mantri Y, Jokerst JV. Engineering Plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano. 2020;14(8):9408–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10(2):299–320.

    Article  CAS  PubMed  Google Scholar 

  105. Krajczewski J, Rucińska K, Townley HE, Kudelski A. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis Photodyn Ther [Internet]. 2019;26(December 2018):162–78. Available from: https://doi.org/10.1016/j.pdpdt.2019.03.016

  106. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990–2042.

    Article  CAS  PubMed  Google Scholar 

  107. Jaque D, Martínez Maestro L, Del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–530.

    Article  CAS  PubMed  Google Scholar 

  108. Ali MRK, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted Plasmonic Photothermal therapy advances toward clinical application. J Phys Chem C. 2019;123(25):15375–93.

    Article  CAS  Google Scholar 

  109. Koryakina I, Kuznetsova DS, Zuev DA, Milichko VA, Timin AS, Zyuzin MV. Optically responsive delivery platforms: from the design considerations to biomedical applications. Nano. 2020;9:39–74.

    Google Scholar 

  110. Li YJ, Yan XP. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging. Nanoscale. 2016;8(32):14965–70.

    Article  CAS  PubMed  Google Scholar 

  111. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules. 2015;16(2):515–23.

    Article  CAS  PubMed  Google Scholar 

  113. De R, Song YH, Mahata MK, Lee KT. pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein. J Mater Chem B [Internet]. 2022;10(18):3420–33. Available from: https://doi.org/10.1039/D2TB00246A.

  114. Mu Y, Gong L, Peng T, Yao J, Lin Z. Advances in pH-responsive drug delivery systems. OpenNano [Internet]. 2021;5:100031. Available from: https://doi.org/10.1016/j.onano.2021.100031.

  115. Yap JE, Zhang L, Lovegrove JT, Beves JE, Stenzel MH. Visible light—responsive drug delivery nanoparticle via donor–Acceptor Stenhouse Adducts (DASA). Macromol Rapid Commun. 2020;41(21):1–8.

    Article  Google Scholar 

  116. Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res [Internet]. 2021;11(4):1323–39. Available from: https://doi.org/10.1007/s13346-021-00963-0

  117. Amin MU, Ali S, Tariq I, Ali MY, Pinnapreddy SR, Preis E, et al. Ultrasound-responsive smart drug delivery system of lipid coated mesoporous silica nanoparticles. Pharmaceutics. 2021;13(9):1396.

    Google Scholar 

  118. Li M, Zhao G, Su WK, Shuai Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front Chem. 2020;8(July):647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology [Internet]. 2018;16(1):1–10. Available from: https://doi.org/10.1186/s12951-018-0398-2

  120. An X, Zhu A, Luo H, Ke H, Chen H, Zhao Y. Rational design of multi-stimuli-responsive Nanoparticles for precise cancer therapy. ACS Nano. 2016;10(6):5947–58.

    Article  CAS  PubMed  Google Scholar 

  121. Ganguly P, Breen A, Pillai SC. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng. 2018;4(7):2237–75.

    Article  CAS  PubMed  Google Scholar 

  122. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13:44.

    Google Scholar 

Download references

Acknowledgments

R. De. gratefully acknowledges the support by the National Research Foundation (NRF), South Korea, Grant No. 2020R1I1A1A01072502.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranjit De or Kyong-Tai Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De, R., Mahata, M.K., Song, Y.H., Kim, KT. (2022). Nanobody-Based Delivery Systems for Diagnosis and Therapeutic Applications. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_8

Download citation

Publish with us

Policies and ethics