Skip to main content

Nanoarchaeosomes in Drug Delivery

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 698 Accesses

Abstract

Nanoarchaeosomes are roughly smaller than 600-nm-diameter vesicles, having a mono- or oligolamellar monolayer or a bilayer membrane, made of pure archaeolipids, or in combination with other amphipathic molecules. They share morphology with liposomes but exhibit different properties, from their lipid stereoisomerism, their reactivity in front to chemical and physical agents, to their membrane fluidity and permeability, besides their heterogeneous compositions, considerably wider than those of liposomes. Such differences make them attractive as biomaterials constituting new lipid-based nanomedicines offering high structural stability and simple preparation at a lab and industrial scale, two disadvantages of a eukaryote or bacterial lipids-based nanomedicines. This chapter offers first a snapshot of archaea, since each gender, according to its habitat and metabolism, produces a given type or archaeolipid that will be responsible for the specific characteristics of each type or nanoarchaeosome. This is followed by an updated revision on the preclinical applications of nanoarchaeosomes in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2013;97(24):10243–54.

    Article  CAS  PubMed  Google Scholar 

  2. Ishino S, Ishino Y. DNA polymerases and DNA ligases. In: Thermophilic microbes in environmental and industrial biotechnology; 2013. p. 429–57.

    Chapter  Google Scholar 

  3. Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24(18):3546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74(11):5088–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blohs M, Moissl-Eichinger C, Mahnert A, Spang A, Dombrowski N, Krupovic M, et al. Archaea-an introduction. Encycl Microbiol. 2019;1:243–52.

    Google Scholar 

  6. Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J. 2009;3(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  7. Pester M, Schleper C, Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol. 2011;14(3):300–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  9. Gramain A, Díaz GC, Demergasso C, Lowenstein TK, Mcgenity TJ. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol. 2011;13(8):2105–21.

    Article  PubMed  Google Scholar 

  10. Boone DR, Whitman WB, Rouvière P. Diversity and taxonomy of methanogens. In: Methanogenesis. Boston: Springer; 1993. p. 35–80.

    Chapter  Google Scholar 

  11. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  12. Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. Prentice-Hall: Upper Saddle River; 2003.

    Google Scholar 

  13. Karner MB, Delong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409(6819):507–10.

    Article  CAS  PubMed  Google Scholar 

  14. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451(7176):293–6.

    Article  CAS  PubMed  Google Scholar 

  15. Cavicchioli R. Cold-adapted archaea. Nat Rev Microbiol. 2006;4(5):331–43.

    Article  CAS  PubMed  Google Scholar 

  16. Cavicchioli R, Thomas T, Curmi PMG. Cold stress response in Archaea. Extremophiles. 2000;4(6):321–31.

    Article  CAS  PubMed  Google Scholar 

  17. Koga Y, Morii H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem. 2005;69(11):2019–34.

    Article  CAS  PubMed  Google Scholar 

  18. Sleytr UB, Schuster B, Egelseer EM, Pum D. S-layers: principles and applications. FEMS Microbiol Rev. 2014;38(5):823–64.

    Article  CAS  PubMed  Google Scholar 

  19. Schuster B, Sleytr UB. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater. 2015;19:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kandler O, König H. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol. 1978;118(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  21. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea biotechnology. Biotechnol Adv. 2021;47:107668.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F. Accumulation of poly (β-Hydroxybutyrate) by halobacteria. Appl Environ Microbiol. 1986;51(1):214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiraldi C, Giuliano M, De Rosa M. Perspectives on biotechnological applications of archaea. Archaea. 2002;1(2):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koller M. Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci. 2015;2015:370164.

    Article  Google Scholar 

  26. Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles. 2014;18(2):463–70.

    Article  CAS  PubMed  Google Scholar 

  27. Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol. 2020;65:118–28.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts MF. Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci. 2004;9:1999–2019.

    Article  CAS  PubMed  Google Scholar 

  29. Borges N, Jorge CD, Gonçalves LG, Gonçalves S, Matias PM, Santos H. Mannosylglycerate: structural analysis of biosynthesis and evolutionary history. Extremophiles. 2014;18(5):835–52.

    Article  CAS  PubMed  Google Scholar 

  30. Ryu J, Kanapathipillai M, Lentzen G, Park CB. Inhibition of beta-amyloid peptide aggregation and neurotoxicity by alpha-d-mannosylglycerate, a natural extremolyte. Peptides. 2008;29(4):578–84.

    Article  CAS  PubMed  Google Scholar 

  31. da Costa MS, Santos H, Galinski EA. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol. 1998;61:117–53.

    PubMed  Google Scholar 

  32. Kohno Y, Egawa Y, Itoh S, Nagaoka SI, Takahashi M, Mukai K. Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta. 1995;1256(1):52–6.

    Article  PubMed  Google Scholar 

  33. Xu R, Fazio GC, Matsuda SPT. On the origins of triterpenoid skeletal diversity. Phytochemistry. 2004;65(3):261–91.

    Article  CAS  PubMed  Google Scholar 

  34. Spanova M, Daum G. Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol. 2011;113(11):1299–320.

    Article  CAS  Google Scholar 

  35. Gilmore SF, Yao AI, Tietel Z, Kind T, Facciotti MT, Parikh AN. The role of squalene in the organization of monolayers derived from lipid extracts of Halobacterium salinarum. Langmuir. 2013;29(25):7922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh OV, Gabani P. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol. 2011;110(4):851–61.

    Article  CAS  PubMed  Google Scholar 

  37. Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Haloarchaeal carotenoids: healthy novel compounds from extreme environments. Mar Drugs. 2019;17(9):524.

    Article  CAS  PubMed Central  Google Scholar 

  38. Langworthy TA, Tornabene TG, Holzer G. Lipids of archaebacteria. Zbl Bakt Mik Hyg I C. 1982;3(2):228–44.

    CAS  Google Scholar 

  39. Lübben M. Cytochromes of archaeal electron transfer chains. Biochim Biophys Acta. 1995;1229(1):1–22.

    Article  PubMed  Google Scholar 

  40. Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta Bioenerg. 2010;1797(9):1587–605.

    Article  CAS  Google Scholar 

  41. Sinninghe Damsté JS, Schouten S, Hopmans EC, Van Duin ACT, Geenevasen JAJ. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res. 2002;43(10):1641–51.

    Article  Google Scholar 

  42. Caforio A, Driessen AJM. Archaeal phospholipids: structural properties and biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1325–39.

    Article  CAS  PubMed  Google Scholar 

  43. Yamauchi K, Akiyama F, Kitano T. Highly hydrophobic surface material: poly(phytanyl methacrylate). Macromolecules. 2000;33(11):4285–7.

    Article  CAS  Google Scholar 

  44. Sehgal SN, Kates M, Gibbons NE. Lipids of Halobacterium cutirubrum. Can J Biochem Physiol. 1962;40:69–81.

    Article  CAS  PubMed  Google Scholar 

  45. Kates M, Yengoyan LS, Sastry PS. A diether analog of phosphatidylglycerophosphate in Halobacterium cutirubrum. Biochim Biophys Acta. 1965;98(2):252–68.

    Article  CAS  PubMed  Google Scholar 

  46. Kates M, Kushwaha SC. Biochemistry of lipids of extremely halophilic bacteria. In: Caplan SR, Ginzburg M, editors. Energetics and structure of halophilic microorganisms. Amsterdam: Elsevier; 1978. p. 461–80.

    Google Scholar 

  47. Kates M, Moldoveanu N, Stewart LC. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta. 1993;1169:46–53.

    Article  CAS  PubMed  Google Scholar 

  48. Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233(39):149–52.

    Article  CAS  PubMed  Google Scholar 

  49. Lattanzio VMT, Corcelli A, Mascolo G, Oren A. Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles. 2002;6(6):437–44.

    Article  CAS  PubMed  Google Scholar 

  50. Weik M, Patzelt H, Zaccai G, Oesterhelt D. Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. Mol Cell. 1998;1(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  51. Corcelli A. The cardiolipin analogues of Archaea. Biochim Biophys Acta. 2009;1788(10):2101–6.

    Article  CAS  PubMed  Google Scholar 

  52. Corcelli A, Lobasso S. 25 characterization of lipids of halophilic archaea. Methods Microbiol. 2006;35:585–613.

    Article  CAS  Google Scholar 

  53. Salvador-Castell M, Golub M, Erwin N, Demé B, Brooks NJ, Winter R, et al. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Commun Biol. 2021;4(1):1–13.

    Article  Google Scholar 

  54. Oren A. Halophilic archaea on Earth and in space: growth and survival under extreme conditions. Philos Trans R Soc A Math Phys Eng Sci. 2014;372(2030):20140194.

    Article  Google Scholar 

  55. Shinoda W, Mikami M, Baba T, Hato M. Molecular dynamics study on the effect of chain branching on the physical properties of lipid bilayers: structural stability. J Phys Chem B. 2003;107(50):14030–5.

    Article  CAS  Google Scholar 

  56. Christian JHB, Waltho JA. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962;65(3):506–8.

    Article  CAS  PubMed  Google Scholar 

  57. Yamauchi K, Doi K, Kinoshita M, Kii F, Fukuda H. Archaebacterial lipid models: highly salt-tolerant membranes from 1,2-diphytanylglycero-3-phosphocholine. Biochim Biophys Acta Biomembr. 1992;1110(2):171–7.

    Article  CAS  Google Scholar 

  58. Yamauchi K, Sakamoto Y, Moriya A, Yamada K, Hosokawa T, Kinoshita M, et al. Archaebacterial lipid models. Highly thermostable membranes from 1,1′-(1,32-dotriacontamethylene)-bis(2-phytanyl-sn-glycero-3-phosphocholine). J Am Chem Soc. 2002;112(8):3188–91.

    Article  Google Scholar 

  59. Tenchov B, Vescio EM, Sprott GD, Zeidel ML, Mathai JC. Salt tolerance of archaeal extremely halophilic lipid membranes. J Biol Chem. 2006;281(15):10016–23.

    Article  CAS  PubMed  Google Scholar 

  60. Bidle KA, Hanson TE, Howell K, Nannen J. HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii. Extremophiles. 2006;11(1):49–55.

    Article  PubMed  Google Scholar 

  61. Kaur A, Van PT, Busch CR, Robinson CK, Pan M, Pang WL, et al. Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol. 2010;6:393.

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Rosa M, de Rosa S, Gambacorta A. 13C-NMR assignments and biosynthetic data for the ether lipids of Caldariella. Phytochemistry. 1977;16(12):1909–12.

    Article  Google Scholar 

  63. De Rosa M, De Rosa S, Gambacorta A, Bu’Lockt JD. Structure of calditol, a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group. Phytochemistry. 1980;19(2):249–54.

    Article  Google Scholar 

  64. de Rosa M, de Rosa S, Gambacorta A, Minale L, Bu’lock JD. Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group. Phytochemistry. 1977;16(12):1961–5.

    Article  Google Scholar 

  65. Langworthy TA. Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta. 1977;487(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  66. Shinoda W, Shinoda K, Baba T, Mikami M. Molecular dynamics study of bipolar tetraether lipid membranes. Biophys J. 2005;89(5):3195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jacquemet A, Barbeau J, Lemiègre L, Benvegnu T. Archaeal tetraether bipolar lipids: structures, functions and applications. Biochimie. 2009;91(6):711–7.

    Article  CAS  PubMed  Google Scholar 

  68. De Rosa M, Gambacorta A. The lipids of archaebacteria. Prog Lipid Res. 1988;27(3):153–75.

    Article  PubMed  Google Scholar 

  69. Gliozzi A, Paoli G, De Rosa M, Gambacorta A. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta Biomembr. 1983;735(2):234–42.

    Article  CAS  Google Scholar 

  70. Gabriel JL, Lee Gau Chong P. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids. 2000;105(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  71. Benvegnu T, Lemiègre L, Cammas-Marion S. Archaeal lipids: innovative materials for biotechnological applications. Eur J Org Chem. 2008;28:4725–44.

    Article  Google Scholar 

  72. Gliozzi A, Relini A, Chong PLG. Structure and permeability properties of biomimetic membranes of bolaform archaeal tetraether lipids. J Membr Sci. 2002;206(1–2):131–47.

    Article  CAS  Google Scholar 

  73. Benvegnu T, Brard M, Plusquellec D. Archaeabacteria bipolar lipid analogues: structure, synthesis and lyotropic properties. Curr Opin Colloid Interface Sci. 2004;8(6):469–79.

    Article  CAS  Google Scholar 

  74. Koga Y. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea. 2012;2012:789652.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nichols DS, Miller MR, Davies NW, Goodchild A, Raftery M, Cavicchioli R. Cold adaptation in the Antarctic Archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol. 2004;186(24):8508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oger PM, Cario A. Adaptation of the membrane in Archaea. Biophys Chem. 2013;183:42–56.

    Article  CAS  PubMed  Google Scholar 

  77. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, et al. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol. 1988;11(1):20–7.

    Article  CAS  Google Scholar 

  78. Elferink MGL, de Wit JG, Driessen AJM, Konings WN. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta Biomembr. 1994;1193(2):247–54.

    Article  CAS  Google Scholar 

  79. Mathai JC, Sprott GD, Zeidel ML. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem. 2001;276(29):27266–71.

    Article  CAS  PubMed  Google Scholar 

  80. Dannenmuller O, Arakawa K, Eguchi T, Kakinuma K, Blanc S, Albrecht AM, Schmutz M, Nakatani YOG. Membrane properties of archaeal macrocyclic diether phospholipids. Chem Eur J. 2000;6(4):645–54.

    Article  CAS  PubMed  Google Scholar 

  81. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol. 2008;190(15):5404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parra FL, Caimi AT, Altube MJ, Cargnelutti DE, Vermeulen ME, Farias MA, et al. Make it simple: (SR-A1+TLR7) macrophage targeted NANOarchaeosomes. Front Bioeng Biotechnol. 2018;6:163.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–IN27.

    Article  CAS  PubMed  Google Scholar 

  84. Deamer DW. From “Banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J. 2010;24(5):1308–10.

    Article  CAS  PubMed  Google Scholar 

  85. Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020;154–155:102–22.

    Article  PubMed  Google Scholar 

  86. Gambacorta A, Gliozzi A, De Rosa M. Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol. 1995;11(1):115–31.

    Article  CAS  PubMed  Google Scholar 

  87. Fan Y, Zhang Q. Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci. 2013;8(2):81–7.

    Article  CAS  Google Scholar 

  88. Uhl P, Pantze S, Storck P, Parmentier J, Witzigmann D, Hofhaus G, et al. Oral delivery of vancomycin by tetraether lipid liposomes. Eur J Pharm Sci. 2017;108:111–8.

    Article  CAS  PubMed  Google Scholar 

  89. Klein K, Stolk P, De Bruin ML, Leufkens HGM, Crommelin DJA, De Vlieger JSB. The EU regulatory landscape of non-biological complex drugs (NBCDs) follow-on products: observations and recommendations. Eur J Pharm Sci. 2019;133:228–35.

    Article  CAS  PubMed  Google Scholar 

  90. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083.

    Article  CAS  PubMed  Google Scholar 

  91. Nanomedicine Market Size, Share, Trends, Growth | 2022 to 2027. Available from: https://www.marketdataforecast.com/market-reports/nanomedicine-market.

  92. Nanomedicine Market Size and Share | Growth Prediction- 2030. Available from: https://www.alliedmarketresearch.com/nanomedicine-market.

  93. Khalil IA, Younis MA, Kimura S, Harashima H. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020;43(4):584–95.

    Article  CAS  PubMed  Google Scholar 

  94. Alving CR, Steck EA, Chapman WL, Waits VB, Hendricks LD, Swartz GM, et al. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci U S A. 1978;75(6):2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sprott GD, Tolson DL, Patel GB. Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett. 1997;154(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  96. Gliozzi A, Relini A. Lipid vesicles as model systems for archaea membranes handbook of nonmedical applications of liposomes. In: Barenholz Y, Lasic DD, editors. Handbook of nonmedical applications of liposomes. CRC Press; 1996. p. 329–48.

    Google Scholar 

  97. Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol. 1999;19(4):317–57.

    Article  CAS  PubMed  Google Scholar 

  98. Jensen SM, Christensen CJ, Petersen JM, Treusch AH, Brandl M. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: an approach for oral drug delivery? Int J Pharm. 2015;493(1–2):63–9.

    Article  CAS  PubMed  Google Scholar 

  99. Li Z, Chen J, Sun W, Xu Y. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochem Biophys Res Commun. 2010;394(2):412–7.

    Article  CAS  PubMed  Google Scholar 

  100. Parmentier J, Thewes B, Gropp F, Fricker G. Oral peptide delivery by tetraether lipid liposomes. Int J Pharm. 2011;415(1–2):150–7.

    Article  CAS  PubMed  Google Scholar 

  101. Parmentier J, Hofhaus G, Thomas S, Cuesta LC, Gropp F, Schröder R, et al. Improved oral bioavailability of human growth hormone by a combination of liposomes containing bio-enhancers and tetraether lipids and omeprazole. J Pharm Sci. 2014;103(12):3985–93.

    Article  CAS  PubMed  Google Scholar 

  102. Uhl P, Helm F, Hofhaus G, Brings S, Kaufman C, Leotta K, et al. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. Eur J Pharm Biopharm. 2016;103:159–66.

    Article  CAS  PubMed  Google Scholar 

  103. Uhl P, Sauter M, Hertlein T, Witzigmann D, Laffleur F, Hofhaus G, et al. Overcoming the mucosal barrier: tetraether lipid-stabilized liposomal nanocarriers decorated with cell-penetrating peptides enable oral delivery of vancomycin. Adv Ther. 2021;4(4):2000247.

    Article  CAS  Google Scholar 

  104. Benvegnu T, Réthoré G, Brard M, Richter W, Plusquellec D. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chem Commun. 2005;44:5536–8.

    Article  Google Scholar 

  105. Morilla MJ, Gomez DM, Cabral P, Cabrera M, Balter H, Tesoriero MVD, et al. M cells prefer archaeosomes: an in vitro/in vivo snapshot upon oral gavage in rats. Curr Drug Deliv. 2011;8(3):320–9.

    Article  CAS  PubMed  Google Scholar 

  106. Choquet CG, Patel GB, Sprott GD, Beveridge TJ. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol. 1994;42(2–3):375–84.

    CAS  PubMed  Google Scholar 

  107. Schilrreff P, Simioni YR, Jerez HE, Caimi AT, de Farias MA, Villares Portugal R, et al. Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Colloids Surf B Biointerfaces. 2019;179:479–87.

    Article  CAS  PubMed  Google Scholar 

  108. Higa LH, Schilrreff P, Perez AP, Iriarte MA, Roncaglia DI, Morilla MJ, et al. Ultradeformable archaeosomes as new topical adjuvants. Nanomed Nanotechnol Biol Med. 2012;8(8):1319–28.

    Article  CAS  Google Scholar 

  109. Altube MJ, Selzer SM, De Farias MA, Portugal RV, Morilla MJ, Romero EL. Surviving nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine. 2016;11(16):2103–17.

    Article  CAS  PubMed  Google Scholar 

  110. Altube MJ, Cutro A, Bakas L, Morilla MJ, Disalvo EA, Romero EL. Nebulizing novel multifunctional nanovesicles: the impact of macrophage-targeted-pH-sensitive archaeosomes on a pulmonary surfactant. J Mater Chem B. 2017;5(40):8083–95.

    Article  CAS  PubMed  Google Scholar 

  111. Altube MJ, Martínez MMB, Malheiros B, Maffía PC, Barbosa LRS, Morilla MJ, et al. Fast biofilm penetration and anti-PAO1 activity of nebulized azithromycin in nanoarchaeosomes. Mol Pharm. 2020;17(1):70–83.

    Article  CAS  PubMed  Google Scholar 

  112. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  113. Altube MJ, Caimi LI, Huck-Iriart C, Morilla MJ, Romero EL. Reparation of an inflamed air-liquid interface cultured A549 cells with nebulized nanocurcumin. Pharmaceutics. 2021;13(9):1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lehmann J, Agel MR, Engelhardt KH, Pinnapireddy SR, Agel S, Duse L, et al. Improvement of pulmonary photodynamic therapy: nebulisation of curcumin-loaded tetraether liposomes. Pharmaceutics. 2021;13(8):1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Réthoré G, Montier T, Le Gall T, Delépine P, Cammas-Marion S, Lemiègre L, et al. Archaeosomes based on synthetic tetraether-like lipids as novel versatile gene delivery systems. Chem Commun. 2007;20:2054–6.

    Article  Google Scholar 

  116. Le Gall T, Barbeau J, Barrier S, Berchel M, Lemiègre L, Jeftić J, et al. Effects of a novel archaeal tetraether-based colipid on the in vivo gene transfer activity of two cationic amphiphiles. Mol Pharm. 2014;11(9):2973–88.

    Article  PubMed  Google Scholar 

  117. Lainé C, Mornet E, Lemiègre L, Montier T, Cammas-Marion S, Neveu C, et al. Folate-equipped pegylated archaeal lipid derivatives: synthesis and transfection properties. Chem Eur J. 2008;14(27):8330–40.

    Article  PubMed  Google Scholar 

  118. Barbeau J, Cammas-Marion S, Auvray P, Benvegnu T. Preparation and characterization of stealth archaeosomes based on a synthetic PEGylated archaeal tetraether lipid. J Drug Deliv. 2011;2011:1–11.

    Article  Google Scholar 

  119. Jiblaoui A, Barbeau J, Vivès T, Cormier P, Glippa V, Cosson B, et al. Folate-conjugated stealth archaeosomes for the targeted delivery of novel antitumoral peptides. RSC Adv. 2016;6(79):75234–41.

    Article  CAS  Google Scholar 

  120. Leriche G, Cifelli JL, Sibucao KC, Patterson JP, Koyanagi T, Gianneschi NC, et al. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Org Biomol Chem. 2017;15(10):2157–62.

    Article  CAS  PubMed  Google Scholar 

  121. Koyanagi T, Leriche G, Onofrei D, Holland GP, Mayer M, Yang J. Cyclohexane rings reduce membrane permeability to small ions in archaea-inspired tetraether lipids. Angew Chem Int Ed Engl. 2016;55(5):1890–3.

    Article  CAS  PubMed  Google Scholar 

  122. Koyanagi T, Cao KJ, Leriche G, Onofrei D, Holland GP, Mayer M, et al. Hybrid lipids inspired by extremophiles and eukaryotes afford serum-stable membranes with low leakage. Chemistry. 2017;23(28):6757–62.

    Article  CAS  PubMed  Google Scholar 

  123. Koyanagi T, Cifelli JL, Leriche G, Onofrei D, Holland GP, Yang J. Thiol-triggered release of intraliposomal content from liposomes made of extremophile-inspired tetraether lipids. Bioconjug Chem. 2017;28(8):2041–5.

    Article  CAS  PubMed  Google Scholar 

  124. Mahmoud G, Jedelská J, Strehlow B, Bakowsky U. Bipolar tetraether lipids derived from thermoacidophilic archaeon Sulfolobus acidocaldarius for membrane stabilization of chlorin e6 based liposomes for photodynamic therapy. Eur J Pharm Biopharm. 2015;95:88–98.

    Article  CAS  PubMed  Google Scholar 

  125. Duse L, Pinnapireddy SR, Strehlow B, Jedelská J, Bakowsky U. Low level LED photodynamic therapy using curcumin loaded tetraether liposomes. Eur J Pharm Biopharm. 2018;126:233–41.

    Article  CAS  PubMed  Google Scholar 

  126. Ali S, Amin MU, Ali MY, Tariq I, Pinnapireddy SR, Duse L, et al. Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. Eur J Pharm Biopharm. 2020;150:50–65.

    Article  CAS  PubMed  Google Scholar 

  127. Plenagl N, Duse L, Seitz BS, Goergen N, Pinnapireddy SR, Jedelska J, et al. Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv. 2019;26(1):23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ayesa U, Chong PLG. Polar lipid fraction E from Sulfolobus acidocaldarius and dipalmitoylphosphatidylcholine can form stable yet thermo-sensitive tetraether/diester hybrid archaeosomes with controlled release capability. Int J Mol Sci. 2020;21(21):1–21.

    Article  Google Scholar 

  129. Attar A, Bakir C, Yuce-Dursun B, Demir S, Cakmakci E, Danis O, et al. Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes. Chem Biol Drug Des. 2018;91(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  130. Jerez HE, Altube MJ, Gándola YB, González L, González MC, Morilla MJ, et al. Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. Eur J Pharm Biopharm. 2021;160:42–54.

    Article  CAS  PubMed  Google Scholar 

  131. González-Paredes A, Manconi M, Caddeo C, Ramos-Cormenzana A, Monteoliva-Sánchez M, Fadda AM. Archaeosomes as carriers for topical delivery of betamethasone dipropionate: in vitro skin permeation study. J Liposome Res. 2010;20(4):269–76.

    Article  PubMed  Google Scholar 

  132. González-Paredes A, Clarés-Naveros B, Ruiz-Martínez MA, Durbán-Fornieles JJ, Ramos-Cormenzana A, Monteoliva-Sánchez M. Delivery systems for natural antioxidant compounds: archaeosomes and archaeosomal hydrogels characterization and release study. Int J Pharm. 2011;421(2):321–31.

    Article  PubMed  Google Scholar 

  133. Perez AP, Perez N, Lozano CMS, Altube MJ, de Farias MA, Portugal RV, et al. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine. 2019;57:339–51.

    Article  CAS  PubMed  Google Scholar 

  134. Moghimipour E, Kargar M, Ramezani Z, Handali S. The potent in vitro skin permeation of archaeosome made from lipids extracted of sulfolobus acidocaldarius. Archaea. 2013;2013:782012.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zavec AB, Ota A, Zupancic T, Komel R, Ulrih NP, Liovic M. Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. J Biotechnol. 2014;192 Pt A(Part A):130–5.

    Article  PubMed  Google Scholar 

  136. Vyas S, Rai S, Paliwal R, Gupta P, Khatri K, Goyal A, et al. Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: one step up in nanotechnology. Curr Nanosci. 2008;4(1):30–44.

    Article  Google Scholar 

  137. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Higa LH, Jerez HE, De Farias MA, Portugal RV, Romero EL, Morilla MJ. Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine. 2017;12(10):1165–75.

    Article  CAS  PubMed  Google Scholar 

  139. Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, et al. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces. 2020;191:110961.

    Article  CAS  PubMed  Google Scholar 

  140. Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine. 2009;4(8):857–60. Available from: https://www.futuremedicine.com/doi/full/10.2217/nnm.09.75.

    Article  CAS  PubMed  Google Scholar 

  141. Dormont F, Rouquette M, Mahatsekake C, Gobeaux F, Peramo A, Brusini R, et al. Translation of nanomedicines from lab to industrial scale synthesis: the case of squalene-adenosine nanoparticles. J Control Release. 2019;307:302–14.

    Article  CAS  PubMed  Google Scholar 

  142. Charó N, Jerez H, Tatti S, Romero EL, Schattner M. The anti-inflammatory effect of nanoarchaeosomes on human endothelial cells. Pharmaceutics. 2022;14:736.

    Article  PubMed  PubMed Central  Google Scholar 

  143. What are the differences between (advantages of) synthetic and natural phospholipids? | Avanti Polar Lipids. Available from: https://avantilipids.com/tech-support/faqs/synthetic-vs-natural-phospholipids.

  144. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eder Lilia Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romero, E.L., Morilla, M.J. (2022). Nanoarchaeosomes in Drug Delivery. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_6

Download citation

Publish with us

Policies and ethics