Skip to main content

Aptamer-Based Targeted Drug Delivery Systems

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Abstract

Nano-therapeutics often aims to design site-specific delivery of the therapeutics at the molecular level to treat diseased tissues or organs. On the contrary, both reachability and interaction of these therapeutic active molecules at the delivery site are challenging tasks, and most of the therapeutics are unable to achieve therapeutic efficacy, because of their side effect associated with off-targeting due to limited selectivity. Therefore, to avoid “off-target” delivery, presently aptamer-based drug target delivery systems have emerged as a vital therapeutic option having specific receptor recognition ability. Moreover, the wide range of chemical flexibility and tissue penetration competency of such delivery systems make aptamers suitable candidates for targeted drug delivery. Recently, various cutting-edge aptamer-based technologies received considerable attention due to their wider applicability in therapeutics including chemotherapeutics, peptides, toxins, and oligonucleotides. The objective of this book chapter is to explore aptamer-based targeting strategy as an advanced therapeutic option supported by evidence collected from past and current research progress. The outcome of the current chapter is thoroughly evaluated, discussed, and concluded for the present scenario and future direction considering the aptamer-based drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belmont P, Constant J-F, Demeunynck M. Nucleic acid conformation diversity: from structure to function and regulation. Chem Soc Rev. 2001;30(1):70–81.

    Article  CAS  Google Scholar 

  3. Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res. 2020;48(7):3400–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How we think about targeting RNA with small molecules. J Med Chem. 2020;63(17):8880–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi S, Sugimoto N. Watson–Crick versus Hoogsteen Base Pairs: chemical strategy to encode and express genetic information in life. Acc Chem Res. 2021;54(9):2110–20.

    Article  CAS  PubMed  Google Scholar 

  6. Puig Lombardi E, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020;48(1):1–15.

    Article  PubMed  Google Scholar 

  7. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37(6):657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release. 2008;126(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  9. Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2020;25(1):3.

    Article  CAS  Google Scholar 

  10. Fang Y-M, Lin D-Q, Yao S-J. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A. 2018;1571:1–15.

    Article  CAS  PubMed  Google Scholar 

  11. Longinotti G, Ybarra G, Vighi S, Perandones C, Montserrat J, Yakisich JS, et al. One step histological detection and staining of the PTEN tumor suppressor protein by a single strand DNA. Diagnostics. 2021;11(2):171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rose KM, Alves Ferreira-Bravo I, Li M, Craigie R, Ditzler MA, Holliger P, et al. Selection of 2′-deoxy-2′-fluoroarabino nucleic acid (FANA) aptamers that bind HIV-1 integrase with picomolar affinity. ACS Chem Biol. 2019;14(10):2166–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Komarova N, Kuznetsov A. Inside the black box: what makes SELEX better? Molecules. 2019;24(19):3598.

    Article  PubMed Central  Google Scholar 

  14. Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowati CH. Aptamer: a potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget. 2018;9(2):2951.

    Article  PubMed  Google Scholar 

  15. Xiao X, Li H, Zhao L, Zhang Y, Liu Z. Oligonucleotide aptamers: recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother. 2021;143:112232.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

    Article  CAS  PubMed  Google Scholar 

  17. Sun H, Zu Y. Aptamers and their applications in nanomedicine. Small. 2015;11(20):2352–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem. 2020:113894.

    Google Scholar 

  19. Zhang T, Tian T, Lin Y. Functionalizing framework nucleic acid-based nanostructures for biomedical application. Adv Mater. 2021:2107820.

    Google Scholar 

  20. Liu M, Yu X, Chen Z, Yang T, Yang D, Liu Q, et al. Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnol. 2017;15(1):1–16.

    Article  Google Scholar 

  21. Tanaka K, Okuda T, Kasahara Y, Obika S. Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol Ther Nucleic Acids. 2021;23:440–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O’toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: uses and mechanisms. Biochim et Biophys Acta (BBA) Gen Sub. 2017;1861(5):1414–28.

    Article  CAS  Google Scholar 

  23. Jia W, Yao Z, Zhao J, Guan Q, Gao L. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 2017;186:1–10.

    Article  CAS  PubMed  Google Scholar 

  24. Vindigni G, Raniolo S, Iacovelli F, Unida V, Stolfi C, Desideri A, et al. AS1411 aptamer linked to DNA nanostructures diverts its traffic inside cancer cells and improves its therapeutic efficacy. Pharmaceutics. 2021;13(10):1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan Y, Li Y, Tang F. Nucleic acid aptamer: a novel potential diagnostic and therapeutic tool for leukemia. Onco Targets Ther. 2019;12:10597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu Q, Liu G, Kai M. DNA aptamers in the diagnosis and treatment of human diseases. Molecules. 2015;20(12):20979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jilma-Stohlawetz P, Knöbl P, Gilbert JC, Jilma B. The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb Haemost. 2012;108(08):284–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gragnano F, Sperlongano S, Golia E, Natale F, Bianchi R, Crisci M, et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediat Inflamm. 2017;2017:5620314.

    Article  Google Scholar 

  29. Riccardi C, Meyer A, Vasseur J-J, Cavasso D, Russo Krauss I, Paduano L, et al. Design, synthesis and characterization of cyclic NU172 analogues: a biophysical and biological insight. Int J Mol Sci. 2020;21(11):3860.

    Article  CAS  PubMed Central  Google Scholar 

  30. Gómez-Outes A, Suárez-Gea ML, Lecumberri R, Rocha E, Pozo-Hernández C, Vargas-Castrillón E. New parenteral anticoagulants in development. Ther Adv Cardiovasc Dis. 2011;5(1):33–59.

    Article  PubMed  Google Scholar 

  31. Hwang CK, Chew EY, Cukras CA, Keenan TD, Wong WT, Linehan WM, et al. Intravitreous treatment of severe ocular von Hippel–Lindau disease using a combination of the VEGF inhibitor, ranibizumab and PDGF inhibitor, E10030: results from a phase 1/2 clinical trial. Clin Exp Ophthalmol. 2021;49:1048–59.

    Article  PubMed  Google Scholar 

  32. Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941.

    Article  PubMed Central  Google Scholar 

  33. Zamay TN, Kolovskaya OS, Glazyrin YE, Zamay GS, Kuznetsova SA, Spivak EA, et al. DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther. 2014;24(2):160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc Natl Acad Sci. 2013;110(20):8170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Asp Med. 2021;81:101003.

    Article  CAS  Google Scholar 

  36. Dammes N, Peer D. Paving the road for RNA therapeutics. Trends Pharmacol Sci. 2020;41(10):755–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, et al. Aptamer-based diagnostic and therapeutic approaches in animals: current potential and challenges. Saudi J Biol Sci. 2021;28(9):5081–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coutinho MF, Matos L, Santos JI, Alves S. RNA therapeutics: how far have we gone? In: The mRNA metabolism in human disease. Cham: Springer International Publishing; 2019. p. 133–77.

    Chapter  Google Scholar 

  40. Chen W, Lee Z, Awadallah A, Zhou L, Xin W. Peritumoral/vascular expression of PSMA as a diagnostic marker in hepatic lesions. Diagn Pathol. 2020;15(1):1–7.

    Article  Google Scholar 

  41. Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev. 2018;134:122–37.

    Article  CAS  PubMed  Google Scholar 

  42. Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34(10):e73-e.

    Article  Google Scholar 

  43. Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol. 2013;4(1):27.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Ther Deliv. 2010;1(6):849–61.

    Article  CAS  PubMed  Google Scholar 

  45. Soldevilla MM, Meraviglia-Crivelli de Caso D, Menon AP, Pastor F. Aptamer-iRNAs as therapeutics for cancer treatment. Pharmaceuticals. 2018;11(4):108.

    Article  CAS  PubMed Central  Google Scholar 

  46. Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest. 2011;121(6):2383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu A-M, Tu M-J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol Ther. 2021:107967.

    Google Scholar 

  48. Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, et al. Novel perspectives towards RNA-based nano-theranostic approaches for cancer management. Nanomaterials. 2021;11(12):3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo S, Tschammer N, Mohammed S, Guo P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther. 2005;16(9):1097–110.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou J, Rossi J. Cell-type–specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med. 2014;62(7):914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bour S, Geleziunas R, Wainberg MA. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol Rev. 1995;59(1):63–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 2009;37(9):3094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaiser L, Weisser J, Kohl M, Deigner H-P. Small molecule detection with aptamer based lateral flow assays: applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci Rep. 2018;8(1):1–10.

    Article  CAS  Google Scholar 

  54. Cho EJ, Collett JR, Szafranska AE, Ellington AD. Optimization of aptamer microarray technology for multiple protein targets. Anal Chim Acta. 2006;564(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  55. Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50.

    Article  CAS  PubMed  Google Scholar 

  56. Ye M, Hu J, Peng M, Liu J, Liu J, Liu H, et al. Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci. 2012;13(3):3341–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mallikaratchy P. Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens. Molecules. 2017;22(2):215.

    Article  PubMed Central  Google Scholar 

  58. Li W, Ma Y, Guo Z, Xing R, Liu Z. Efficient screening of glycan-specific aptamers using a glycosylated peptide as a scaffold. Anal Chem. 2020;93(2):956–63.

    Article  PubMed  Google Scholar 

  59. Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem. 2021:101478.

    Google Scholar 

  60. Wan L-Y, Yuan W-F, Ai W-B, Ai Y-W, Wang J-J, Chu L-Y, et al. An exploration of aptamer internalization mechanisms and their applications in drug delivery. Expert Opin Drug Deliv. 2019;16(3):207–18.

    Article  CAS  PubMed  Google Scholar 

  61. Duan M, Long Y, Yang C, Wu X, Sun Y, Li J, et al. Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget. 2016;7(24):36436.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Skowron PM, Krefft D, Brodzik R, Kasperkiewicz P, Drag M, Koller K-P. An alternative for proteinase K-heat-sensitive protease from fungus Onygena corvina for biotechnology: cloning, engineering, expression, characterization and special application for protein sequencing. Microb Cell Factories. 2020;19(1):1–15.

    Article  Google Scholar 

  63. Tawiah KD, Porciani D, Burke DH. Toward the selection of cell targeting aptamers with extended biological functionalities to facilitate endosomal escape of cargoes. Biomedicine. 2017;5(3):51.

    Google Scholar 

  64. Yu Q, Liu M, Wei S, Wu S, Xiao H, Qin X, et al. Characterization of ssDNA aptamers specifically directed against Trachinotus ovatus NNV (GTONNV)-infected cells with antiviral activities. J Gen Virol. 2019;100(3):380–91.

    Article  CAS  PubMed  Google Scholar 

  65. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011;2011:939851.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Suk J, Xu Q, Kim N, Hanes J, Ensign L, Sciences H, Sciences M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  69. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68(3):701–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mali S. Delivery systems for gene therapy. Ind J Hum Genet. 2013;19(1):3.

    Article  CAS  Google Scholar 

  71. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccine. 2014;2(3):624–41.

    Article  Google Scholar 

  72. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36.

    Article  CAS  PubMed  Google Scholar 

  73. Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers. 2018;10(7):238.

    Article  PubMed Central  Google Scholar 

  74. Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered aptamer-organic amphiphile self-assemblies for biomedical applications: progress and challenges. Small. 2022;18(4):2104341.

    Article  CAS  Google Scholar 

  75. Liu M, Wang L, Lo Y, Shiu SC-C, Kinghorn AB, Tanner JA. Aptamer-enabled nanomaterials for therapeutics. Drug Targeting Imaging Cells. 2022;11(1):159.

    CAS  PubMed  Google Scholar 

  76. Tian J, Ding L, Ju H, Yang Y, Li X, Shen Z, et al. A multifunctional nanomicelle for real-time targeted imaging and precise near-infrared cancer therapy. Angew Chem. 2014;126(36):9698–703.

    Article  Google Scholar 

  77. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen Y, Gao D-Y, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.

    Article  CAS  PubMed  Google Scholar 

  79. Wei Q-Y, Xu Y-M, Lau AT. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers. 2020;12(10):2783.

    Article  CAS  PubMed Central  Google Scholar 

  80. Golombek SK, May J-N, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Catuogno S, Esposito CL, De Franciscis V. Aptamer-mediated targeted delivery of therapeutics: an update. Pharmaceuticals. 2016;9(4):69.

    Article  PubMed Central  Google Scholar 

  82. Shiao Y-S, Chiu H-H, Wu P-H, Huang Y-F. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl Mater Interfaces. 2014;6(24):21832–41.

    Article  CAS  PubMed  Google Scholar 

  83. Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Int J Pharm. 2015;489(1–2):311–7.

    Article  CAS  PubMed  Google Scholar 

  84. Wu P-H, Onodera Y, Ichikawa Y, Rankin EB, Giaccia AJ, Watanabe Y, et al. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int J Nanomed. 2017;12:5069.

    Article  CAS  Google Scholar 

  85. Zhao N, You J, Zeng Z, Li C, Zu Y. An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small. 2013;9(20):3477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sampathkumar S-G, Yarema KJ. Targeting cancer cells with dendrimers. Chem Biol. 2005;12(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  87. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci. 2006;103(16):6315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barzegar Behrooz A, Nabavizadeh F, Adiban J, Shafiee Ardestani M, Vahabpour R, Aghasadeghi MR, et al. Smart bomb AS 1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol. 2017;44(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  89. Taghdisi SM, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Robati RY, et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016;102:152–8.

    Article  CAS  PubMed  Google Scholar 

  90. Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol. 2012;8(1):47–69.

    Article  CAS  PubMed  Google Scholar 

  91. Alshaer W. Functionalizing liposomes with aptamers for active targeting of tumor cells: Université Paris Saclay (COmUE); 2016.

    Google Scholar 

  92. Liu X, Guo R, Huo S, Chen H, Song Q, Jiang G, et al. CaP-based anti-inflammatory HIF-1α siRNA-encapsulating nanoparticle for rheumatoid arthritis therapy. J Control Release. 2022;343:314–25.

    Article  CAS  PubMed  Google Scholar 

  93. Shen Y, Li M, Liu T, Liu J, Xie Y, Zhang J, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine. 2019;14:4029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem. 2009;19(41):7765–70.

    Article  CAS  Google Scholar 

  95. Liang T, Yao Z, Ding J, Min Q, Jiang L, Zhu J-J. Cascaded aptamers-governed multistage drug-delivery system based on biodegradable envelope-type nanovehicle for targeted therapy of HER2-overexpressing breast cancer. ACS Appl Mater Interfaces. 2018;10(40):34050–9.

    Article  CAS  PubMed  Google Scholar 

  96. Cao M, Sun Y, Xiao M, Li L, Liu X, Jin H, et al. Multivalent aptamer-modified DNA origami as drug delivery system for targeted cancer therapy. Chem Res Chin Univ. 2020;36(2):254–60.

    Article  CAS  Google Scholar 

  97. Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed. 2009;48(35):6494–8.

    Article  CAS  Google Scholar 

  98. Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, et al. Molecular aptamers for drug delivery. Trends Biotechnol. 2011;29(12):634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kang H, O’Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun. 2010;46(2):249–51.

    Article  CAS  Google Scholar 

  100. Su F, Jia Q, Li Z, Wang M, He L, Peng D, et al. Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 2019;275:152–62.

    Article  CAS  Google Scholar 

  101. Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, et al. Dynamic nanoassembly-based drug delivery system (DNDDS): learning from nature. Adv Drug Deliv Rev. 2021;175:113830.

    Article  CAS  PubMed  Google Scholar 

  102. Zavareh HS, Pourmadadi M, Moradi A, Yazdian F, Omidi M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol. 2020;165:1422–30.

    Article  CAS  PubMed  Google Scholar 

  103. Lopes-Nunes J, Lifante J, Shen Y, Ximendes EC, Jaque D, Iglesias-de la Cruz MC, et al. Biological studies of an ICG-tagged aptamer as drug delivery system for malignant melanoma. Eur J Pharm Biopharm. 2020;154:228–35.

    Article  CAS  PubMed  Google Scholar 

  104. Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol. 2021;140:106087.

    Article  CAS  PubMed  Google Scholar 

  105. Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: novel therapeutics and potential role in neuro-oncology. Cancers. 2020;12(10):2889.

    Article  CAS  PubMed Central  Google Scholar 

  106. Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: how to strike the evil at its root. Adv Drug Deliv Rev. 2017;120:89–107.

    Article  PubMed  Google Scholar 

  107. Tang X, Feng C, Pan Q, Sun F, Zhu X. Engineered aptamer for the analysis of cells. TrAC Trends Anal Chem. 2021;145:116456.

    Article  CAS  Google Scholar 

  108. Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, et al. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol. 2019;132:190–202.

    Article  CAS  PubMed  Google Scholar 

  109. De Matos AL, Franco LS, McFadden G. Oncolytic viruses and the immune system: the dynamic duo. Mol Ther Methods Clin Dev. 2020;17:349–58.

    Article  Google Scholar 

  110. Mascarelli DE, Rosa RS, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, et al. Boosting antitumor response by costimulatory strategies driven to 4-1BB and OX40 T-cell receptors. Front Cell Dev Biol. 2021;9:692982.

    Article  PubMed  PubMed Central  Google Scholar 

  111. De Cicco P, Ercolano G, Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou J, Bobbin M, Burnett JC, Rossi JJ. Current progress of RNA aptamer-based therapeutics. Front Genet. 2012;3:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bukari B, Samarasinghe RM, Noibanchong J, Shigdar SL. Non-invasive delivery of therapeutics into the brain: the potential of aptamers for targeted delivery. Biomedicine. 2020;8(5):120.

    CAS  Google Scholar 

  114. Hays EM, Duan W, Shigdar S. Aptamers and glioblastoma: their potential use for imaging and therapeutic applications. Int J Mol Sci. 2017;18(12):2576.

    Article  PubMed Central  Google Scholar 

  115. Bascuñana P, Möhle L, Brackhan M, Pahnke J. Fingolimod as a treatment in neurologic disorders beyond multiple sclerosis. Drugs R & D. 2020:1–11.

    Google Scholar 

  116. McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci. 2018;115(26):E6065–E74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang J, Wang J, Wang J, Yang B, Weng Q, He Q. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front Pharmacol. 2019;10:286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee B, Jo Y, Kim G, Ali LA, Sohn DH, Lee S-G, et al. Specific inhibition of soluble γc receptor attenuates collagen-induced arthritis by modulating the inflammatory T cell responses. Front Immunol. 2019;10:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pariama G, Yudawijaya A. Description of triglyceride risk factors with ischemic stroke patients at UKI Hospital for 2018. J Drug Deliv Ther. 2021;11(3):79–85.

    Google Scholar 

  120. Liu S, Feng X, Jin R, Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv. 2018;15(2):173–84.

    Article  CAS  PubMed  Google Scholar 

  121. Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020;35(6):851–68.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu M, Zaman K, Fortenberry YM. Overview of the therapeutic potential of aptamers targeting coagulation factors. Int J Mol Sci. 2021;22(8):3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and tau: a systematic comparison of the mechanisms involved. Front Mol Neurosci. 2019;12:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rohloff JC, Gelinas AD, Jarvis TC, Ochsner UA, Schneider DJ, Gold L, et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol Ther Nucleic Acids. 2014;3:e201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar Sethiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, R. et al. (2022). Aptamer-Based Targeted Drug Delivery Systems. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_4

Download citation

Publish with us

Policies and ethics