Skip to main content

Hybrid Multifunctional Nanomaterials for Diagnostic and Therapeutic Applications

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Abstract

The development of nanoscience and molecular biology led to spectacular progress of the bio-nano interface, bringing out various applications of hybrid nanomaterials in nanomedicine. Hybrid nanomaterials are designed with both inorganic and organic components. Recently, these materials have attracted significant attention, since not only they retain the beneficial properties of all their components, but also, they show additional synergistic performance, such as target specificity or biodegradability, improving the outcome of many biomedical procedures.

Hybrid nanomaterials can be utilized in diagnostics, as imaging and contrast agents, enabling precise visualization at a molecular level, exploiting the potential of a various novel or multimodal imaging techniques, and reducing any adverse effect in healthy tissues. Hybrid nanomaterials can also be used in therapeutic applications, such as photodynamic and photothermal therapy, hyperthermia and radiotherapy, drug delivery, and gene therapies. Furthermore, hybrid multifunctional nanomaterials can be incorporated with several components that can be used for simultaneous diagnostics and therapeutics (theranostics), allowing real-time monitoring of an efficient treatment process, leading to more personalized healthcare systems.

Thus, the synthesis of advanced hybrid nanomaterials for targeted and on-demand theranostics can be considered a state-of-the-art topic in nanomedicine and for this reason, these applications will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–108.

    Article  CAS  PubMed  Google Scholar 

  2. Lagopati N, Evangelou K, Falaras P, Tsilibary EC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG. Nanomedicine: photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther. 2021;222:107795.

    Article  CAS  PubMed  Google Scholar 

  3. Dobbelstein M, Moll U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat Rev Drug Discov. 2014;13:179–96.

    Article  CAS  PubMed  Google Scholar 

  4. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cole JT, Holland NB. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res. 2015;5(3):295–309.

    Article  CAS  PubMed  Google Scholar 

  6. Lagopati N, Kitsiou P, Kontos A, Venieratos P, Kotsopoulou E, Kontos A, et al. Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution. J Photochem Photobiol A Chem. 2010;214(2–3):215–23.

    Article  CAS  Google Scholar 

  7. Lagopati N, Tsilibary EP, Falaras P, Papazafiri P, Pavlatou EA, Kotsopoulou E, Kitsiou P. Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells. Int J Nanomedicine. 2014;9:3219–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lagopati N, Kotsinas A, Veroutis D, Evangelou K, Papaspyropoulos A, Arfanis M, Falaras P, Kitsiou PV, Pateras I, Bergonzini A, Frisan T, Kyriazis S, Tsoukleris DS, Tsilibary EC, Gazouli M, Pavlatou EA, Gorgoulis VG. Biological effect of silver-modified nanostructured titanium dioxide in cancer. Cancer Genomics Proteomics. 2021;18(3 Suppl):425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galata E, Georgakopoulou EA, Kassalia ME, Papadopoulou-Fermeli N, Pavlatou EA. Development of smart composites based on doped-TiO2 nanoparticles with visible light anticancer properties. Materials (Basel). 2019;12(16):2589.

    Article  CAS  Google Scholar 

  10. Kim CS, Duncan B, Creran B, Rotello VM. Triggered nanoparticles as therapeutics. Nano Today. 2013;8:439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ananikov VP. Organic-inorganic hybrid nanomaterials. Nanomaterials (Basel). 2019;9(9):1197.

    Article  CAS  Google Scholar 

  12. Macchione MA, Biglione C, Strumia M. Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polymers (Basel). 2018;10(5):527.

    Article  Google Scholar 

  13. Nguyen PQ, Courchesne ND, Duraj-Thatte A, Praveschotinunt P, Joshi NS. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater. 2018;30(19):e1704847.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim J, Lee N, Hyeon T. Recent development of nanoparticles for molecular imaging. Philos Trans Math Phys Eng Sci. 2017;375(2107):20170022.

    Google Scholar 

  17. Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19(10):3264.

    Article  PubMed Central  Google Scholar 

  18. Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol. 2022;28(2):176–87. https://doi.org/10.3748/wjg.v28.i2.176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zavaleta C, Ho D, Chung EJ. Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol. 2018;23(3):281–93.

    Article  CAS  PubMed  Google Scholar 

  20. Pokropivny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C. 2007;27(5–8):990–3.

    Article  CAS  Google Scholar 

  21. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics aspects of various nanoparticles in veterinary medicine. Int J Mol Sci. 2018;19(11):3299.

    Article  PubMed Central  Google Scholar 

  23. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patra JK, Das G, Fraceto LF, Campos E, Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.

    Article  Google Scholar 

  25. Meroni D, Ardizzone S. Preparation and application of hybrid nanomaterials. Nanomaterials (Basel). 2018;8(11):891.

    Article  Google Scholar 

  26. Park W, Shin H, Choi B, Rhim W-K, Na K, Keun Han D. Advanced hybrid nanomaterials for biomedical applications. Prog Mater Sci. 2020;114:100686.

    Article  CAS  Google Scholar 

  27. Hayami R, Wada K, Nishikawa I, Sagawa T, Yamamoto K, Tsukada S, Gunji T. Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polym J. 2017;49:665–9.

    Article  CAS  Google Scholar 

  28. Diaz U, Corma A. Organic-inorganic hybrid materials: multi-functional solids for multi-step reaction processes. Chem Eur J. 2018;24:3944–58.

    Article  CAS  PubMed  Google Scholar 

  29. de Dios AS, Díaz-García ME. Multifunctional nanoparticles: analytical prospects. Anal Chim Acta. 2010;666(1–2):1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aflori M. Smart nanomaterials for biomedical applications-a review. Nanomaterials (Basel). 2021;11(2):396.

    Article  CAS  Google Scholar 

  31. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–211.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ahmad J, Akhter S, Rizwanullah M, Khan MA, Pigeon L, Addo RT, Greig NH, Midoux P, Pichon C, Kamal MA. Nanotechnology based theranostic approaches in Alzheimer’s disease management: current status and future perspective. Curr Alzheimer Res. 2017;14(11):1164–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paluszkiewicz P, Martuszewski A, Zareba N, Wala K, Banasik M, Kepinska M. The application of nanoparticles in diagnosis and treatment of kidney diseases. Int J Mol Sci. 2022;23:131.

    Article  CAS  Google Scholar 

  34. Saleem H, Zaidi SJ, Alnuaimi NA. Recent advancements in the nanomaterial application in concrete and its ecological impact. Materials (Basel). 2021;14(21):6387.

    Article  CAS  Google Scholar 

  35. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interf Sci. 2022;300:102597.

    Article  CAS  Google Scholar 

  36. Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):59–81.

    Article  Google Scholar 

  37. Ravi-Kumar S, Lies B, Zhang X, Lyu H, Qin H. Laser ablation of polymers: a review. Polym Int. 2019;68:1391–401.

    Article  CAS  Google Scholar 

  38. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenge. Mater Adv. 2021;2:1821–71.

    Article  Google Scholar 

  39. Sergievskaya A, Chauvin A, Konstantinidis S. Sputtering onto liquids: a critical review. Beilstein J Nanotechnol. 2022;13:10–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo X, Liu L, Zhuang Z, Chen X, Ni M, Li Y, Cui Y, Zhan P, Yuan C, Ge H, Wang Z, Chen Y. A new strategy of lithography based on phase separation of polymer blends. Sci Rep. 2015;5:15947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. El-Eskandarany MS, Al-Hazza A, Al-Hajji LA, Ali N, Al-Duweesh AA, Banyan M, Al-Ajmi F. Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials (Basel). 2021;11(10):2484.

    Article  CAS  PubMed Central  Google Scholar 

  42. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review. Materials (Basel). 2014;7(4):2833–81.

    Article  Google Scholar 

  43. Wang L, Sun Y, Li Z, Wu A, Wei G. Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials (Basel). 2016;9(1):53.

    Article  Google Scholar 

  44. Catauro M, Ciprioti SV. Characterization of hybrid materials prepared by sol-gel method for biomedical implementations. A critical review. Materials (Basel). 2021;14(7):1788.

    Article  CAS  Google Scholar 

  45. Manawi YM, Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials (Basel). 2018;11(5):822.

    Article  PubMed Central  Google Scholar 

  46. Mascolo MC, Pei Y, Ring TA. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials (Basel). 2013;6(12):5549–67.

    Article  CAS  PubMed Central  Google Scholar 

  47. Lagopati N, Gatou MA, Tsoukleris DS, Pavlatou EA. Biogenic synthesis of silver nanoparticles with antimicrobial properties. Nanomed Nanotechnol Open Access. 2020;5(1):1–12.

    CAS  Google Scholar 

  48. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bajaj A, Rana S, Miranda OR, Yawe JC, Jerry DJ, Bunz UHF, Rotello VM. Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chem Sci. 2010;1:134–8.

    Article  CAS  Google Scholar 

  52. Saha K, Bajaj A, Duncan B, Rotello VM. Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and biomacromolecules. Small. 2011;7:1903–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bi D, Zhao L, Yu R, Li H, Guo Y, Wang X, Han M. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Deliv. 2018;25(1):564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gazouli M, Lyberopoulou A, Pericleous P, Rizos S, Aravantinos G, Nikiteas N, Anagnou NP, Efstathopoulos EP. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J Gastroenterol. 2012;18(32):4419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7:587012.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fu YS, Li J, Li J. Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties. Nanomaterials (Basel). 2019;9(3):359.

    Article  CAS  Google Scholar 

  57. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the nano crystal size on the x-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):5915.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. Raman techniques: fundamentals and frontiers. Nanoscale Res Lett. 2019;14(1):231.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moraes LG, Rocha RS, Menegazzo LM, de Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008;16(2):145–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kobielusz M, Nitta A, Macyk W, Ohtani B. Combined spectroscopic methods of determination of density of electronic states: comparative analysis of diffuse reflectance spectroelectrochemistry and reversed double-beam photoacoustic spectroscopy. J Phys Chem Lett. 2021;12(11):3019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Son D, Cho S, Nam J, Lee H, Kim M. X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers (Basel). 2020;12(5):1053.

    Article  CAS  Google Scholar 

  63. Asano N, Lu J, Asahina S, Takami S. Direct observation techniques using scanning electron microscope for hydrothermally synthesized nanocrystals and nanoclusters. Nanomaterials (Basel). 2021;11(4):908.

    Article  CAS  Google Scholar 

  64. Malatesta M. Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Euro J Histochem: EJH. 2016;60(4):2751.

    Article  Google Scholar 

  65. Marrese M, Guarino V, Ambrosio L. Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering. J Funct Biomater. 2017;8(1):7.

    Article  PubMed Central  Google Scholar 

  66. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med. 2019;7(1):78–93.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vigata M, Meinert C, Hutmacher DW, Bock N. Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques. Pharmaceutics. 2020;12(12):1188.

    Article  CAS  PubMed Central  Google Scholar 

  68. Selvamani V. Chapter 15 – Stability studies on nanomaterials used in drugs. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Micro and nano technologies, characterization and biology of nanomaterials for drug delivery. Elsevier; 2019. p. 425–44.

    Chapter  Google Scholar 

  69. Shah RA, Frazar EM, Hilt JZ. Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications. Curr Opin Chem Eng. 2020;30:103–11.

    Article  PubMed  Google Scholar 

  70. Aili D, Stevens MM. Bioresponsive peptide–inorganic hybrid nanomaterials. Chem Soc Rev. 2010;39:3358–70.

    Article  CAS  PubMed  Google Scholar 

  71. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8. https://doi.org/10.1042/EBC20150001.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim JE, Choi JH, Colas M, Kim DH, Lee H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron. 2016;80:543–59.

    Article  CAS  PubMed  Google Scholar 

  73. Mauriz E. Clinical applications of visual plasmonic colorimetric sensing. Sensors (Basel). 2020;20(21):6214.

    Article  CAS  Google Scholar 

  74. Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat. 2011;3(2):34–55.

    Article  CAS  Google Scholar 

  75. Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv Mater. 2020;32(37):e2000866.

    Article  PubMed  Google Scholar 

  76. Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9:629054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2019;94:44–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021;21(4):1109.

    Article  CAS  Google Scholar 

  79. Li X, Zhang XN, Li XD, Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol Med. 2016;13(3):339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lagopati N. Chapter 3: Nuclear medicine imaging essentials. In: Lyra-Georgousopoulou M, editor. Clinical nuclear medicine physics with MATLAB®: a problem solving approach. CRC Press/Taylor & Francis Group; 2022. p. 108–10.

    Google Scholar 

  81. Marik J, Tartis MS, Zhang H, Fung JY, Kheirolomoom A, Sutcliffe JL, Ferrara KW. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl Med Biol. 2007;34(2):165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Andreozzi E, Seo JW, Ferrara K, Louie A. Novel method to label solid lipid nanoparticles with 64Cu for positron emission tomography imaging. J Mater Eng Perform. 2011;22:808–58.

    CAS  Google Scholar 

  83. Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev. 2017;113:157–76.

    Article  CAS  PubMed  Google Scholar 

  84. Al Faraj A, Alotaibi B, Shaik AP, Shamma KZ, Al Jammaz I, Gerl J. Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. Int J Nanomedicine. 2015;10:6293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol. 2004;4:1019–24.

    Article  CAS  PubMed  Google Scholar 

  86. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA. 2006;103:3357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol. 2007;34:579–83.

    Article  CAS  PubMed  Google Scholar 

  88. Vamvakas I, Lagopati N, Andreou M, Sotiropoulos M, Gatzis A, Limouris G, Antypas C, Lyra M. Patient specific computer automated dosimetry calculations during therapy with 111In Octreotide. Eur J Radiography. 2009;1(4):180–3.

    Article  Google Scholar 

  89. Head HW, Dodd GD 3rd, Bao A, Soundararajan A, Garcia-Rojas X, Prihoda TJ, McManus LM, Goins BA, Santoyo CA, Phillips WT. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology. 2010;255(2):405–14.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Arranja A, Ivashchenko O, Denkova AG, Morawska K, van Vlierberghe S, Dubruel P, Waton G, Beekman FJ, Schosseler F, Mendes E. SPECT/CT imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm. 2016;13(3):1158–65.

    Article  CAS  PubMed  Google Scholar 

  91. Kryza D, Taleb J, Janier M, Marmuse L, Miladi I, Bonazza P, Louis C, Perriat P, Roux S, Tillement O, Billotey C. Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal SPECT/MR/optical imaging and theragnostic agent. Bioconjug Chem. 2011;22:1145–52.

    Article  CAS  PubMed  Google Scholar 

  92. Belhocine TZ, Blankenberg FG, Kartachova MS, Stitt LW, Vanderheyden JL, Hoebers FJ, Van de Wiele C. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging. 2015;42(13):2083–97.

    Article  CAS  PubMed  Google Scholar 

  93. Ramos-Membrive R, Erhard Á, de Redín IL, Quincoces G, Collantes M, Ecay M, Irache JM, Peñuelas I. In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. J Drug Deliv Sci Technol. 2021;64:101809.

    Article  CAS  Google Scholar 

  94. Kochebina O, Halty A, Taleb J, Kryza D, Janier M, Sadr AB, Baudier T, Rit S, Sarrut D. In vivo gadolinium nanoparticle quantification with SPECT/CT. EJNMMI Phys. 2019;6(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhao L, Wen S, Zhu M, Li D, Xing Y, Shen M, Shi X, Zhao J. 99mTc-labelled multifunctional polyethylenimine-entrapped gold nanoparticles for dual mode SPECT and CT imaging, artificial cells. Nanomed Biotechnol. 2018;46(sup1):488–98.

    CAS  Google Scholar 

  96. Lagopati N. Chapter 13: Nanotechnology in nuclear medicine/MATLAB use. In: Lyra-Georgousopoulou M, editor. Clinical nuclear medicine physics with MATLAB®: a problem solving approach. CRC Press/Taylor & Francis Group; 2022. p. 330–2.

    Google Scholar 

  97. Peng SF, Yang MJ, Su CJ, Chen HL, Lee PW, Wei MC, Sung HW. Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials. 2009;30(9):1797–808.

    Article  CAS  PubMed  Google Scholar 

  98. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  99. Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res. 2019;68:1–30.

    Article  PubMed  Google Scholar 

  100. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mahata MK, De R, Lee KT. Near-infrared-triggered upconverting nanoparticles for biomedicine applications. Biomedicine. 2021;9(7):756.

    CAS  Google Scholar 

  102. Zeng F, Du M, Chen Z. Nanosized contrast agents in ultrasound molecular imaging. Front Bioeng Biotechnol. 2021;9:758084.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Man F, Lammers T, de Rosales RTM. Imaging nanomedicine-based drug delivery: a review of clinical studies. Mol Imaging Biol. 2018;20(5):683–95.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics. 2022;12(1):434–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol. 2014;7:145–63.

    PubMed  PubMed Central  Google Scholar 

  106. Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, Cannavò SP. Early and late onset side effects of photodynamic therapy. Biomedicine. 2018;6(1):12.

    Google Scholar 

  107. Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc. 2013;46(1):7–23.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3(2):2516–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kruger CA, Abrahamse H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules. 2018;23(10):2628.

    Article  PubMed Central  Google Scholar 

  111. Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv Funct Mater. 2013;23(24):3077–86.

    Article  CAS  Google Scholar 

  112. Labib A, Lenaerts V, Chouinard F, Leroux JC, Ouellet R, van Lier J. Biodegradable nanospheres containing phthalocyanines and naphthalocyanines for targeted photodynamic tumor therapy. Pharm Res. 1991;8:1027.

    Article  CAS  PubMed  Google Scholar 

  113. Thorat Gadgil BS, Killi N, Rathna GVN. Polyhydroxyalkanoates as biomaterials. Medchemcomm. 2017;8(9):1774–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Keam SJ, Scott LJ, Curran MP. Verteporfin: a review of its use in the management of subfoveal choroidal neovascularisation. Drugs. 2003;63(22):2521–54.

    Article  CAS  PubMed  Google Scholar 

  115. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990–2042.

    Article  CAS  PubMed  Google Scholar 

  116. Xiang GH, Hong GB, Wang Y, Cheng D, Zhou JX, Shuai XT. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro. Int J Nanomedicine. 2013;8:4613–22.

    PubMed  PubMed Central  Google Scholar 

  117. Liu HJ, Wang M, Hu X, Shi S, Xu P. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide. Small. 2020;16(38):e2003398.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano. 2014;9(1):16–30.

    Article  PubMed  Google Scholar 

  119. Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, Kim H, Kim J, Shin EC, Jon S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release. 2017;256:56–67.

    Article  CAS  PubMed  Google Scholar 

  120. Li Z, Deng J, Sun J, Ma Y. Hyperthermia targeting the tumor microenvironment facilitates immune checkpoint inhibitors. Front Immunol. 2020;11:595207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zampetidis CP, Galanos P, Angelopoulou A, Zhu Y, Polyzou A, Karamitros T, Kotsinas A, Lagopati N, Mourkioti I, Mirzazadeh R, Polyzos A, Garnerone S, Mizi A, Gusmao EG, Sofiadis K, Gál Z, Larsen DH, Pefani DE, Demaria M, Tsirigos A, Crosetto N, Maya-Mendoza A, Papaspyropoulos A, Evangelou K, Bartek J, Papantonis A, Gorgoulis VG. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell. 2021;81(23):4907–23.

    Article  CAS  PubMed  Google Scholar 

  122. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm. 2022;611:121290.

    Article  CAS  PubMed  Google Scholar 

  125. Velu R, Calais T, Jayakumar A, Raspall F. A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials (Basel). 2019;13(1):92.

    Article  Google Scholar 

  126. Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emerg Mater. 2021;4(1):75–99.

    Article  CAS  Google Scholar 

  127. Thakur A, Foged C. Nanoparticles for mucosal vaccine delivery. In: Nanoengineered biomaterials for advanced drug delivery. Elsevier; 2020. p. 603–46.

    Chapter  Google Scholar 

  128. Das A, Ali N. Nanovaccine: an emerging strategy. Expert Rev Vaccines. 2021;20(10):1273–90. https://doi.org/10.1080/14760584.2021.1984890. Epub 2021 Sep 29.

    Article  CAS  PubMed  Google Scholar 

  129. Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath analysis: a promising tool for disease diagnosis-the role of sensors. Sensors (Basel). 2022;22(3):1238.

    Article  CAS  Google Scholar 

  130. d’Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic nanomedicine for malignant gliomas [published correction appears in Front Bioeng Biotechnol. 2020 Jan 30;7:468]. Front Bioeng Biotechnol. 2019;7:325.

    Google Scholar 

  131. Taubert A, Leroux F, Rabu P, de Zea Bermudez V. Advanced hybrid nanomaterials. Beilstein J Nanotechnol. 2019;10:2563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gazouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lagopati, N. et al. (2022). Hybrid Multifunctional Nanomaterials for Diagnostic and Therapeutic Applications. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_17

Download citation

Publish with us

Policies and ethics