Skip to main content

Porphysomes and Porphyrin-Based Nanomaterials for Drug Delivery System

  • Chapter
  • First Online:
Pharmaceutical Nanobiotechnology for Targeted Therapy

Abstract

Porphyrin is an organic molecule with the properties of protracted electronic structure with π-conjugation, extreme molar absorption to near-infrared spectrum from the visible region, supreme oxygen quantum yields with singlet state, and chemical flexibility. The nanoparticles of porphyrin and its derivatives have been developed for drug delivery systems which are one of the popular fields in pharmaceutical chemistry. Porphyrin nanomaterials condensing to different drug delivery variables have been utilized to enhance delivery features due to the properties that allow immune tolerance, specific targeting, better hydrophilicity, and lengthy tissue lifetime. This chapter has reviewed the drug delivery properties of nanomaterials of porphyrin with biological applications for photodynamic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu TW, Huynh E, Macdonald TD, Zheng G. Porphyrins for imaging, photodynamic therapy, and photothermal therapy. In: Chen X, Wong S, editors. Cancer theranostics. London: Elsevier Inc./Academic Press; 2014. p. 229–54. https://doi.org/10.1016/B978-0-12-407722-5.00014-1.

    Chapter  Google Scholar 

  2. Scherer J. Chemische-physiologische untersuchungen. Ann Chem Phar. 1841;40:1–64.

    Article  Google Scholar 

  3. Meyer-Betz F. Untersuchungen uber die biologische (photodynamische) wirkung des hamatoporphyrins und anderen derivated des blut und gallenfarbstoffs. Deutsch Arch Klin Med. 1913;112:476–503.

    Google Scholar 

  4. Dougherry TJ, Potter WR, Weishaupt KR. An overview of the status of photoradiation therapy. In: Doiron TJ, Gomer CJ, editors. Porphyrin localisation and treatment of tumors. New York: Alan R. Lass; 1984.

    Google Scholar 

  5. Montaseri H, Kruger CA, Abrahamse H. Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment. Int J Mol Sci. 2020;21(9):3358. Available from: https://doi.org/10.3390/ijms21093358.

    Article  CAS  PubMed Central  Google Scholar 

  6. Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. Available from: https://doi.org/10.1186/s40824-018-0140-z.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Finlay JC, Zhu TC, Dimofte A, Stripp D, Malkowicz SB, Busch TM, Hahn SM. Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy. Photochem Photobiol. 2006;82:1270–8. Available from: https://doi.org/10.1562/2005-10-04-RA-711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azzouzi AR, Barret E, Moore CM, Villers A, Allen C, Scherz A, Muir G, De Wildt M, Barber NJ, Lebdai S, Emberton M. TOOKAD((R)) soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer. BJU Int. 2013;112:766–74. Available from: https://doi.org/10.1111/bju.12265.

    Article  CAS  PubMed  Google Scholar 

  9. Rocha LB, Soares HT, Mendes MIP, Cabrita A, Schaberle FA, Arnaut LG. Necrosis depth and photodynamic threshold dose with redaporfin-PDT. Photochem Photobiol. 2020;96:692–8. Available from: https://doi.org/10.1111/php.13256.

    Article  CAS  PubMed  Google Scholar 

  10. Hamblin MR. Photodynamic therapy for cancer: what’s past is prologue. Photochem Photobiol. 2020;96:506–16. Available from: https://doi.org/10.1111/php.13190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Z, Sun Z, Ren Y, Chen X, Zhang W, Zhu X, Mao Z, Shen J, Nie S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (review). Mol Med Rep. 2019;20:5–15. Available from: https://doi.org/10.3892/mmr.2019.10218.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kralova J, Kejik Z, Briza T, Pouckova P, Kral A, Martasek P, Kral V. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J Med Chem. 2010;53:128–38. Available from: https://doi.org/10.1021/jm9007278.

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Wang Z, Zhong Y, Zou Y, Wang C, Wu H, Lee A, Yang W, Wang X, Liu Y, Zhang D, Yan J, Hao M, Zheng M, Chung R, Bai F, Shi B. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials. 2020;229:119576. Available from: https://doi.org/10.1016/j.biomaterials.2019.119576.

    Article  CAS  PubMed  Google Scholar 

  14. Kato T, Jin CS, Ujiie H, Lee D, Fujino K, Wada H, Hu HP, Weersink RA, Chen J, Kaji M, Kaga K, Matsui Y, Wilson BC, Zheng G, Yasufuku K. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer. 2017;113:59–68. Available from: https://doi.org/10.1016/j.lungcan.2017.09.002.

    Article  PubMed  Google Scholar 

  15. Yao S, Chen L, Jia F, Sun X, Su H, Liu H, Yang L, Wang Z, Wu F, Wang K. Platinated porphyrin tailed with folic acid conjugate for cell-targeted photodynamic activity. J Lumin. 2019;214:116552. Available from: https://doi.org/10.1016/j.jlumin.2019.116552.

    Article  CAS  Google Scholar 

  16. Bera K, Maiti S, Maity M, Mandal C, Maiti NC. Porphyrin-gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega. 2018;3:4602–19. Available from: https://doi.org/10.1021/acsomega.8b00419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang M, Zhu X, Zhang Y, Zhang Z, Zhang Z, Mei Q, Zhang J, Wu M, Liu J, Zhang Y. Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano. 2019;13:10405–18. Available from: https://doi.org/10.1021/acsnano.9b04200.

    Article  CAS  PubMed  Google Scholar 

  18. Sai DL, Lee J, Nguyen DL, Kim YP. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp Mol Med. 2021;53:495–504. Available from: https://doi.org/10.1038/s12276-021-00599-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang L, Lu Y, Zhang R, Care A, Ortega TA, Deyev SM, Qian Y, Zvyagin AV. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomater. 2017;51:461–70. Available from: https://doi.org/10.1016/j.actbio.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Lin H, Tong R, An N, Qu F. Near-infrared light-mediated DOX-UCNPs@mHTiO2 nanocomposite for chemo/photodynamic therapy and imaging. Colloids Surf B Biointerfaces. 2017;154:429–37. Available from: https://doi.org/10.1016/j.colsurfb.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu X, Zhang J, Liu J, Zhang Y. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci (Weinh). 2019;6:1901358. Available from: https://doi.org/10.1002/advs.201901358.

    Article  CAS  Google Scholar 

  22. Sugumaran PJ, Liu XL, Herng TS, Peng E, Ding J. GO-functionalized large magnetic iron oxide nanoparticles with enhanced colloidal stability and hyperthermia performance. ACS Appl Mater Interfaces. 2019;11:22703–13. Available from: https://doi.org/10.1021/acsami.9b04261.

    Article  CAS  PubMed  Google Scholar 

  23. Chen RJ, Chen PC, Prasannan A, Vinayagam J, Huang CC, Chou PY, Weng CC, Tsai HC, Lin SY. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity. Mater Sci Eng C. 2016;63:678–85. Available from: https://doi.org/10.1016/j.msec.2016.03.034.

    Article  CAS  Google Scholar 

  24. Sugumaran PJ, Yang Y, Wang Y, Liu X, Ding J. Influence of the aspect ratio of iron oxide nanorods on hysteresis-loss-mediated magnetic hyperthermia. ACS Appl Bio Mater. 2021;4:4809–20. Available from: https://doi.org/10.1021/acsabm.1c00040.

    Article  CAS  PubMed  Google Scholar 

  25. Maclaughlin CM, Ding L, Jin C, Cao P, Siddiqui I, Hwang DM, Chen J, Wilson BC, Zheng G, Hedley DW. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study. J Biomed Opt. 2016;21:84002. Available from: https://doi.org/10.1117/1.JBO.21.8.084002.

    Article  PubMed  Google Scholar 

  26. Yan S, Zeng X, Tang Y, Liu BF, Wang Y, Liu X. Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Adv Mater. 2019;31:1905825. Available from: https://doi.org/10.1002/adma.201905825.

    Article  CAS  Google Scholar 

  27. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev. 2013;42:6620–33. Available from: https://doi.org/10.1039/C3CS60036J.

    Article  CAS  PubMed  Google Scholar 

  28. Feng X, Lv F, Liu L, Tang H, Xing C, Yang Q, Wang S. Conjugated polymer nanoparticles for drug delivery and imaging. ACS Appl Mater Interfaces. 2010;2:2429–35. Available from: https://doi.org/10.1021/am100435k.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan H, Wang B, Lv F, Liu L, Wang S. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications. Adv Mater. 2014;26(40):6978–82. Available from: https://doi.org/10.1002/adma.201400379.

    Article  CAS  PubMed  Google Scholar 

  30. Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C. Incorporation of porphyrin π-conjugated backbone for polymer-dot sensitized photodynamic therapy. Biomacromolecules. 2016;17(6):2128–36. Available from: https://doi.org/10.1021/acs.biomac.6b00356.

    Article  CAS  PubMed  Google Scholar 

  31. Guo B, Feng G, Manghnani PN, Cai X, Liu J, Wu W, Xu S, Cheng X, The C, Liu B. A porphyrin-based conjugated polymer for highly efficient in vitro and in vivo photothermal therapy. Small. 2016;12(45):6243–54. Available from: https://doi.org/10.1002/smll.201602293.

    Article  CAS  PubMed  Google Scholar 

  32. Konan YN, Berton M, Gurny R, Allemann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 2003;18:241–9. Available from: https://doi.org/10.1016/S0928-0987(03)00017-4.

    Article  CAS  PubMed  Google Scholar 

  33. Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M, Hamblin MR. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707. Available from: https://doi.org/10.1016/j.biomaterials.2019.119707.

    Article  CAS  PubMed  Google Scholar 

  34. Yan X, Song Y, Liu J, Zhou N, Zhang C, He L, Zhang Z, Liu Z. Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell. Biosens Bioelectron. 2019;126(1):734–42. Available from: https://doi.org/10.1016/j.bios.2018.11.047.

    Article  CAS  PubMed  Google Scholar 

  35. Rowsell JLC, Yaghi OM. Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73:3–14. Available from: https://doi.org/10.1016/j.micromeso.2004.03.034.

    Article  CAS  Google Scholar 

  36. Rocca JD, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44(10):957–68. Available from: https://doi.org/10.1021/ar200028a.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu K, He C, Lin W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J Am Chem Soc. 2014;136:16712–5. Available from: https://doi.org/10.1021/ja508679h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu K, He C, Lin W. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J Am Chem Soc. 2015;137(24):7600–3. Available from: https://doi.org/10.1021/jacs.5b04069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc. 2016;138(38):12502–10. Available from: https://doi.org/10.1021/jacs.6b06663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park J, Jiang Q, Feng D, Mao L, Zhou H. Size-controlled synthesis of porphyrin metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc. 2016;138(10):3518–25. Available from: https://doi.org/10.1021/jacs.6b00007.

    Article  CAS  PubMed  Google Scholar 

  41. Lan G, Ni K, Veroneau SS, Feng X, Nash GT, Luo T, Xu Z, Lin W. Titanium-based nanoscale metal-organic framework for type I photodynamic therapy. J Am Chem Soc. 2019;141(10):4204–8. Available from: https://doi.org/10.1021/jacs.8b13804.

    Article  CAS  PubMed  Google Scholar 

  42. Lin W, Hu Q, Jiang K, Yang Y, Cui Y. A porphyrin based metal-organic frameworks as a pH-responsive drug carrier. J Solid State Chem. 2016;237:307–12. Available from: https://doi.org/10.1016/j.jssc.2016.02.040.

    Article  CAS  Google Scholar 

  43. Min H, Wang J, Qi Y, Zhang Y, Han X, Xu Y, Xu J, Li Y, Chen L, Cheng K, Liu G, Yang N, Li Y, Nie G. Biomimetic metal-organic framework nanoparticles for cooperatively combination of antiangiogensis and photodynamic therapy for enhanced efficacy. Adv Mater. 2019:e1808200. Available from: https://doi.org/10.1002/adma.201808200.

  44. Chen J, Zhu Y, Kaskel S. Porphyrin-based metal-organic frameworks for biomedical applications. Angew Chem Int Ed. 2021;60(10):5010–35. Available from: https://doi.org/10.1002/anie.201909880.

    Article  CAS  Google Scholar 

  45. Bieniek A, Wisniewski M, Czarnecka J, Wierzbicki J, Zietek M, Nowacki M, Grzanka D, Kloskowski T, Roszek K. Porphyrin base 2D-MOF structures as dual-kinetic sorafenib nanocarriers for hepatoma treatment. Int J Mol Sci. 2021;22(20):11161. Available from: https://doi.org/10.3390/ijms222011161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waller PJ, Gandara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015;48(12):3053–63. Available from: https://doi.org/10.1021/acs.accounts.5b00369.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Liang X, Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale. 2016;8:12394–405. Available from: https://doi.org/10.1039/C5NR07849K.

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Liu S, Liu Y, Sun C, Chang M, Zhao X, Hu C, Pang M. Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl Mater Interfaces. 2019;11(13):12321–6. Available from: https://doi.org/10.1021/acsami.9b00361.

    Article  CAS  PubMed  Google Scholar 

  49. Tao D, Feng L, Chao Y, Liang C, Song X, Wang H, Yang K, Liu Z. Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv Funct Mater. 2018;28:1804901. Available from: https://doi.org/10.1002/adfm.201804901.

    Article  Google Scholar 

  50. Lu Y, Song G, He B, Zhang H, Wang X, Zhou D, Dai W, Zhang Q. Strengthened tumor photodynamic therapy based on a visible nanoscale covalent organic polymer engineered by microwave assisted synthesis. Adv Funct Mater. 2020;30:2004834. Available from: https://doi.org/10.1002/adfm.202004834.

    Article  CAS  Google Scholar 

  51. Yu G, Cen T, He Z, Wang S, Wang Z, Ying X, Li S, Jacobson O, Wang S, Wang L, Lin L, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin nanocage-embedded single molecular nanoparticles as cancer nanotheranostics. Angew Chem Int Ed. 2019;58(26):8799–803. Available from: https://doi.org/10.1002/anie.201903277.

    Article  CAS  Google Scholar 

  52. Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:582–612. Available from: https://doi.org/10.1002/wnan.1238.

    Article  CAS  PubMed  Google Scholar 

  53. Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A. 2002;99:4769–74. Available from: https://doi.org/10.1073/pnas.082065899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol. 2020;8:Article 127. Available from: https://doi.org/10.3389/fbioe.2020.00127.

    Article  PubMed  Google Scholar 

  55. Yang L, Zhou J, Wang Z, Li H, Wang K, Liu H, Wu F. Biocompatible conjugated porphyrin nanoparticles with photodynamic/photothermal performances in cancer therapy. Dyes Pigm. 2020;182:108664. Available from: https://doi.org/10.1016/j.dyepig.2020.108664.

    Article  CAS  Google Scholar 

  56. Pan D, Liang P, Zhong X, Wang D, Cao H, Wang W, He W, Yang Z, Dong X. Self-assembled porphyrin-based nanoparticles with enhanced near-infrared absorbance for fluorescent imaging and cancer photodynamic therapy. ACS Appl Bio Mater. 2019;2:999–1005. Available from: https://doi.org/10.1021/acsabm.8b00530.

    Article  CAS  PubMed  Google Scholar 

  57. Wang D, Niu L, Qiao Z, Cheng D, Wang J, Zhong Y, Bai F, Wang H, Fan H. Synthesis of self-assembled porphyrin nanoparticles photosensitizers. ACS Nano. 2018;12(4):3796–803. Available from: https://doi.org/10.1021/acsnano.8b01010.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang M, Wu J, Liu W, Ren H, Zhang W, Lee C, Wang P. Self-assembly of amphiphilic porphyrins to construct nanoparticles for highly efficient photodynamic therapy. Chem Eur J. 2021;27(43):11195–204. Available from: https://doi.org/10.1002/chem.202101199.

    Article  CAS  PubMed  Google Scholar 

  59. Jin CS, Zheng G. Liposomal nanostructure for photosensitizer delivery. Lasers Surg Med. 2011;43(7):744–8. Available from: https://doi.org/10.1002/lsm.21101.

    Article  Google Scholar 

  60. MacDonald TD, Zheng G. Porphysome nanoparticles: tailoring treatments with nature’s pigments. Photonics Lasers Med. 2014;3(3):183–91. Available from: https://doi.org/10.1515/plm-2013-0059.

    Article  CAS  Google Scholar 

  61. Guidolin K, Ding L, Chen J, Wilson BC, Zheng G. Porphyrin-lipid nanovesicles (Porphysomes) are effective photosensitizers for photodynamic therapy. Nanophotonics. 2021;10(2):3161–8. Available from: https://doi.org/10.1515/nanoph-2021-0220.

    Article  CAS  Google Scholar 

  62. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater. 2011;10:324–32. Available from: https://doi.org/10.1038/NMAT2986.

    Article  CAS  PubMed  Google Scholar 

  63. Menon RB, Lakshmi VS, Aiswarya MU, Raju K, Nair SC. Porphysomes-a paradigm shift in targeted drug delivery. Int J Appl Pharm. 2018;10(2):1–6. Available from: https://doi.org/10.22159/ijap.2018v10i2.23493.

    Article  CAS  Google Scholar 

  64. Jin CS, Cui L, Wang F, Chen J, Zheng G. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater. 2014;3:1240–9. Available from: https://doi.org/10.1002/adhm.201300651.

    Article  CAS  PubMed  Google Scholar 

  65. Shakiba M, Chen J, Zheng G. Porphyrin nanoparticles in photomedicine. In: Hamblin MR, Avci P, editors. Applications of nanoscience in photomedicine. Woodhead Publishing; 2015. p. 511–26. Available from: https://doi.org/10.1533/9781908818782.511.

    Chapter  Google Scholar 

  66. Valic MS, Zheng G. Rethinking translational nanomedicine: insights from the ‘bottom-up’ design of the porphysome for guiding the clinical development of imageable nanomaterials. Curr Opin Chem Biol. 2016;33:126–34. Available from: https://doi.org/10.1016/j.cbpa.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  67. Huynh E, Zheng G. Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular structures. Nano Today. 2014;9:212–22. Available from: https://doi.org/10.1016/j.nantod.2014.04.012.

    Article  CAS  Google Scholar 

  68. Lovell JF, Jin CS, Huynh E, MacDonald TD, Cao W, Zheng G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed Engl. 2012;51:2429–33. Available from: https://doi.org/10.1002/anie.201108280.

    Article  CAS  PubMed  Google Scholar 

  69. Zheng G. Porphysome nanotechnology for image-guided phototherapy. Photodiagnosis Photodyn Ther. 2017;17:A33. Available from: https://doi.org/10.1016/j.pdpdt.2017.01.074.

    Article  Google Scholar 

  70. Liu TW, MacDonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano. 2013;7(5):4221–32. Available from: https://doi.org/10.1021/nn400669r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huynh E, Leung B, Helfield B, Shakiba M, Gandier A, Jin C, Master E, Wilson B, Goertz D, Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015;10:325–32. Available from: https://doi.org/10.1038/nnano.2015.25.

    Article  CAS  PubMed  Google Scholar 

  72. Xu X, Zhao L, Qu Q, Wang J, Shi H, Zhao Y. Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles. ACS Appl Mater Interfaces. 2015;7(31):17371–80. Available from: https://doi.org/10.1021/acsami.5b06026.

    Article  CAS  PubMed  Google Scholar 

  73. Xie Y, Xu M, Li W, Liang H, Wang L, Song Y. Iron-porphyrin based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater Sci Eng C. 2020;112:110864. Available from: https://doi.org/10.1016/j.msec.2020.110864.

    Article  CAS  Google Scholar 

  74. Macdonald TD, Liu TW, Zheng G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew Chem Int Ed Engl. 2014;53:6956–9. Available from: https://doi.org/10.1002/anie.201400133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Murugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murugan, A., Sugumaran, P.J., Ravikumar, C.K.R.P., Raman, N., Yadav, H.S., Arasu, P.T. (2022). Porphysomes and Porphyrin-Based Nanomaterials for Drug Delivery System. In: Barabadi, H., Mostafavi, E., Saravanan, M. (eds) Pharmaceutical Nanobiotechnology for Targeted Therapy. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-12658-1_10

Download citation

Publish with us

Policies and ethics