Skip to main content

Concepts and Strategies in the Design of Formulations for Freeze Drying

  • Chapter
  • First Online:
Principles and Practices of Lyophilization in Product Development and Manufacturing

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 59))

  • 888 Accesses

Abstract

In order to enhance the storage stability of water labile molecules the common practice is to employ lyophilization (freeze drying) process to create dry glassy state dosage form. The lyophilization process is not free of imparting stresses during the processing, and since what is in the formulation dictates the design of the processing conditions, both the formulation and process should be designed in such a way that the drug entity, especially protein molecule, behaves well against the stresses during the various steps or phases of freeze drying, namely, in-process stability, long-term storage stability, and sufficient stability post-reconstitution until it is administered into the patient body. Understanding of key attributes/liabilities of the protein molecules and the selection of excipients and design of process parameters is key to robust formulation and lyophilization process that can produce a product that has adequate stability, quality, and commercial manufacturing viability. The objective of this chapter is to discuss briefly the concepts and strategies that would help to design a robust formulation and a lyophilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pikal MJ, Lukes AL, Lang JE. Thermal decomposition of amorphous beta-lactam antibacterials. J Pharm Sci. 1977;66:1312–6.

    CAS  PubMed  Google Scholar 

  2. Pikal MJ, Lukes AL, Lang JE, Gaines K. Quantitative crystallinity determinations of beta-lactam antibiotics by solution calorimetry: correlations with stability. J Pharm Sci. 1978;67:767–73.

    CAS  PubMed  Google Scholar 

  3. Pikal MJ, Dellerman KM. Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25C: cephalosporins in the solid and aqueous solution states. Int J Pharm. 1989;50:233–52.

    CAS  Google Scholar 

  4. Gervais A, Angiuoni G, O’Hara J, Juul Jensen K, Sewerin K, Rossi M, Nedved M, Dillon P, Uddin S, Cornen S, Schnaible V. Forced degradation studies for therapeutic proteins. Brussels: European Biopharmaceutical Enterprises; 2015.

    Google Scholar 

  5. Siedler M, Kumar V, Chari R, Saluja S, Fraunhofer W. Development of drug product formulations: molecular design and early candidates screening. In: Jameel F, Hershenson S, Khan MA, Martin-Moe S, editors. Quality by design for biopharmaceutical drug product development. New York: Springer New York; 2015. p. 61–85.

    Google Scholar 

  6. Perez-Ramírez B, Guziewicz N, Simler R, Sreedhara A. Approaches for early developability assessment of proteins to guide quality by design of liquid formulations. In: Jameel F, Hershenson S, Khan MA, Martin-Moe S, editors. Quality by design for biopharmaceutical drug product development. New York: Springer New York; 2015. p. 87–114.

    Google Scholar 

  7. Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci. 2015;104(6):1885–98.

    CAS  PubMed  Google Scholar 

  8. Folzer E, Diepold K, Bomans K, Huwyler J, Mahler H-C, Koulov AV. Selective oxidation of methionine and tryptophan residues in a therapeutic IgG1 molecule. J Pharm Sci. 2015;104(9):2824–31.

    CAS  PubMed  Google Scholar 

  9. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;21(6):897–903.

    CAS  PubMed  Google Scholar 

  10. Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL Jr. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47(18):5088–100.

    CAS  PubMed  Google Scholar 

  11. Houde D, Peng Y, Berkowitz SA, Engen JR. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010;9(8):1716–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, Li Y, Li Y, Drummond J, Prueksaritanont T, Vlasak J. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol. 2009;46(8–9):1878–82.

    CAS  PubMed  Google Scholar 

  13. Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci. 2009;18(2):424–33.

    CAS  PubMed  Google Scholar 

  14. Zhang A, Hu P, MacGregor P, Xue Y, Fan H, Suchecki P, Olszewski L, Liu A. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem. 2014;86(7):3468–75.

    CAS  PubMed  Google Scholar 

  15. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48(6–7):860–6.

    CAS  PubMed  Google Scholar 

  16. Pace AL, Wong RL, Zhang YT, Kao Y-H, Wang YJ. Asparagine deamidation dependence on buffer type, pH, and temperature. J Pharm Sci. 2013;102(6):1712–23.

    CAS  PubMed  Google Scholar 

  17. Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci. 2006;95(11):2321–36.

    CAS  PubMed  Google Scholar 

  18. Vlasak J, Bussat MC, Wang S, Wagner-Rousset E, Schaefer M, Klinguer-Hamour C, Kirchmeier M, Corvaïa N, Ionescu R, Beck A. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392(2):145–54.

    CAS  PubMed  Google Scholar 

  19. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. Disulfide bonds and protein folding. Biochemistry. 2000;39(15):4207–16.

    CAS  PubMed  Google Scholar 

  20. Wei B, Berning K, Quan C, Zhang YT. Glycation of antibodies: modification, methods and potential effects on biological functions. MAbs. 2017;9(4):586–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitra N, Sinha S, Ramya TN, Surolia A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci. 2006;31:156–63. [PubMed] [Google Scholar].

    CAS  PubMed  Google Scholar 

  22. Hanson SR, et al. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci U S A. 2009;106:3131–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosques CJ, Imperiali B. The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc Natl Acad Sci U S A. 2003;100:7593–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Skropeta D. The effect of individual N-glycans on enzyme activity. Bioorg Med Chem. 2009;17:2645–53.

    CAS  PubMed  Google Scholar 

  25. Liu H, Ponniah G, Zhang H-M, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs. 2014;6(5):1145–54. https://doi.org/10.4161/mabs.29883.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    CAS  PubMed  Google Scholar 

  27. Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci. 2010;99(1):82–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts CJ, Das TK, Sahin E. Predicting solution aggregation rates for therapeutic proteins: approaches and challenges. Int J Pharm. 2011;418(2):318–33.

    CAS  PubMed  Google Scholar 

  29. Velev OD, Kaler EW, et al. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. Biophys J. 1998;75(6):2682–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tessier PM, Lenhoff AM, et al. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. Biophys J. 2002;82(3):1620–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Moon YU, Curtis RA, et al. Protein-protein interactions in aqueous ammonium sulfate solutions. Lysozyme and bovine serum albumin (BSA). J Solut Chem. 2000;29(8):699–717.

    CAS  Google Scholar 

  32. Alford JR, Kendrick BS, et al. Measurement of the second osmotic virial coefficient for protein solutions exhibiting monomer-dimer equilibrium. Anal Biochem. 2008;377(2):128–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Atul Saluja R, Fesinmeyer M, Hogan S, Brems DN, Gokarn YR. Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation. Biophys J. 2010;99(8):2657–65.

    PubMed  PubMed Central  Google Scholar 

  34. Thiagarajan G, Semple A, James JK, Cheung JK, Shameem M. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability. MAbs. 2016;8(6):1088–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JMR, Shire SJ, Gokarn YR. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J. 2012;103(1):69–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pace CN. Conformational stability of globular-proteins. Trends Biochem Sci. 1990;15(1):14–7.

    CAS  PubMed  Google Scholar 

  37. Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody aggregation: insights from sequence and structure. Antibodies. 2016;5(3):19.

    PubMed  PubMed Central  Google Scholar 

  38. https://www.americanpharmaceuticalreview.com/25604-Pharmaceutical-Particle-Size-Analyzers/12040038-Zetasizer-Nano-ZSP-System/

  39. Nema S. Key formulation challenges of protein (mAb) drugs, Pfizer, http://users.unimi.it/gazzalab/wordpress/wp-content/uploads/2011/12/9-Key-formulation-challenges-of-protein-drugs

  40. Larsen SS. Studies on stability of drugs in frozen systems. Arch Pharm Chem Sci Ed. 1973;1:41–53.

    CAS  Google Scholar 

  41. Murase N, Franks F. Salt precipitation during the freeze concentration of phosphate buffer solutions. Biophys Chem. 1989;34:293–300.

    CAS  PubMed  Google Scholar 

  42. Gomez G, Rodriguez-Hornedo N, Pikal MJ. Effect of freezing on the pH of sodium phosphate buffer solutions. Pharm Res. 1994;11:S-265, PPD 7364.

    Google Scholar 

  43. Szkudlarek BA, Rodriguez-Hornedo N, Pikal MJ. Analysis of pH changes of potassium phosphate buffer salt solutions during freezing. Pharm Res. 1994;11:S-228, PPD 7215.

    Google Scholar 

  44. Pikal MJ, Dellerman KM, Roy ML, Riggin RM. The effects of formulation variables on the stability of freeze dried human growth hormone. Pharm Res. 1991;8:427–36.

    CAS  PubMed  Google Scholar 

  45. Gomez G, Pikal MJ, Rodriguez-Horned N. Effect of initial buffer composition on pH changes during far-from equilibrium freezing of sodium phosphate buffer solutions. Pharm Res. 2001;18:90–7.

    CAS  PubMed  Google Scholar 

  46. Milton N. Eli Lilly, presentation in IIR, Sept, 2005.

    Google Scholar 

  47. Mahler H-C, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    CAS  PubMed  Google Scholar 

  48. Narhi L. Characterization and biological relevance of protein aggregates and other particles 100–200,000 nm in size (sub micron and subvisible), https://www.casss.org/resource/resmgr/hos_speaker_slides/2019_narhi_linda_slides

    Google Scholar 

  49. Das TK. Protein particulate detection issues in biotherapeutics development--current status. AAPS PharmSciTech. 2012;13(2):732–46.

    CAS  PubMed Central  Google Scholar 

  50. Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98(9):3167–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63:1160–71.

    CAS  PubMed  Google Scholar 

  52. Barn NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, Randolph TW. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87:1554–9.

    Google Scholar 

  53. Barn NB, Randolph TW, Cleland JL. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res. 1995;12:2–11.

    Google Scholar 

  54. Kerwin BA, Heller MC, Levin SH, Randolph TW. Effects of tween 80 and sucrose on acute short-term stability and long-term storage at-20 degrees of a recombinant haemoglobin. J Pharm Sci. 1998;87:1062–8.

    CAS  PubMed  Google Scholar 

  55. Narang AS, Rao VM, Desai DS. Effect of antioxidants and silicates on peroxides in povidone. J Pharm Sci. 2012;101(1):127–39.

    CAS  PubMed  Google Scholar 

  56. Akers MJ. Excipient-drug interactions in parenteral formulations. J Pharm Sci. 2002;91(11):2283–300.

    CAS  PubMed  Google Scholar 

  57. Pindrus M, Shire SJ, Kelley RF, Demeule B, Wong R, Yiren X, Yadav S. Solubility challenges in high concentration monoclonal antibody formulations: relationship with amino acid sequence and intermolecular interactions. Mol Pharm. 2015;12(11):3896–907.

    CAS  PubMed  Google Scholar 

  58. Gokarn YR, Matthew Fesinmeyer R, Saluja A, Razinkov V, Chase SF, Laue TM, Brems DN. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci. 2011;20:580–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fesinmeyer RM, Hogan S, Saluja A, Brych SR, Kras E, Narhi LO, Brems DN, Gokarn YR. Effect of ions on agitation- and temperature-induced aggregation reactions of antibodies. Pharm Res. 2009;26:903–13.

    CAS  PubMed  Google Scholar 

  60. Laue T. Proximity energies: a framework for understanding concentrated solutions. J Mol Recognit. 2012;25:165–73.

    CAS  PubMed  Google Scholar 

  61. Schneider CP, Shukla D, Trout BL. Arginine and the Hofmeister series: the role of ion-ion interactions in protein aggregation suppression. J Phys Chem B. Author manuscript; available in PMC 2012 Jun 9. Published in final edited form as: J Phys Chem B. 2011;115(22):7447–7458.

    Google Scholar 

  62. Pikal MJ. Lyophilization. In: Swarbrick J, Boylan J, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2002. p. 1299–326.

    Google Scholar 

  63. Haeuser C, Goldbach P, Huwyler J, Friess W, Allmendinger A. Be aggressive! Amorphous excipients enabling single-step freeze-drying of monoclonal antibody formulations. Pharmaceutics. 2019;11:616.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams NA, Dean T. Vial breakage by frozen mannitol solutions: correlation with thermal characteristics and effect of sterioisomerism, additives, and vial configuration. J Parenter Sci Technol. 1991;45:94–100.

    CAS  PubMed  Google Scholar 

  65. Williams NA, Lee Y, Polli GP, Jennings TA. The effects of cooling rate on solid phase transitions and associated vial breakage occurring in frozen mannitol solutions. J Parenter Sci Technol. 1986;40(135):71.

    Google Scholar 

  66. Williams NA, Guglielmo J. Thermal mechanical analysis of frozen solutions of mannitol and some related steroisomers: evidence of expansion during warming and correlation with vial breakage during lyophilization. J Parenter Sci Technol. 1993;47:119–23.

    CAS  PubMed  Google Scholar 

  67. Pikal MJ, Rigsbee D, Roy ML, Galreath D, Kovach KJ, Wang W, Carpenter JF, Cicerone MT. Solid state chemistry of proteins: II. The correlation of storage stability of freeze-dried human growth hormone (hGH) with structure and dynamics in the glassy solid. J Pharm Sci. 200;97(12):5106–21.

    Google Scholar 

  68. Pikal MJ, Rigsbee DR. The stability of insulin in crystalline and amorphous solids: observation of greater stability for the amorphous form. Pharm Res. 1997;14:1379–87.

    CAS  PubMed  Google Scholar 

  69. Yoshioka S, Aso Y, Kojima S. Usefulness of the Kohlrausch-Williams-Watts stretched exponential function to describe protein aggregation in lyophilized formulations and the temperature dependence near the glass transition temperature. Pharm Res. 2001;18:256–60.

    CAS  PubMed  Google Scholar 

  70. Abdul-Fattah AM, Dellerman K, Bogner RH, Pikal MJ. The effect of annealing on the stability of amorphous solids: chemical stability of freeze-dried moxalactam. J Pharm Sci. 2007;96:1237–50.

    CAS  PubMed  Google Scholar 

  71. Cicerone MT, Soles CL, Chowdhuri Z, Pikal MJ, Chang LL. Fast dynamics as a diagnostic for excipients in preservation of dried proteins. Am Pharm Rev. 2005;8(6):24–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 America Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jameel, F. (2023). Concepts and Strategies in the Design of Formulations for Freeze Drying. In: Jameel, F. (eds) Principles and Practices of Lyophilization in Product Development and Manufacturing . AAPS Advances in the Pharmaceutical Sciences Series, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-12634-5_4

Download citation

Publish with us

Policies and ethics