Skip to main content

Beyond pH: Acid/Base Relationships in Frozen and Freeze-Dried Pharmaceuticals

  • Chapter
  • First Online:
Principles and Practices of Lyophilization in Product Development and Manufacturing

Abstract

Stability of the majority of pharmaceuticals and biopharmaceuticals depends on acidity/basicity of the environment. In aqueous solutions, acidity/basicity is commonly expressed using proton activity scale, pH, while definition and experimental measurements of acid-base relationships in frozen and freeze-dried materials are less straightforward. The chapter starts with a brief summary of the current understanding of several critical aspects of pH and apparent acidity/basicity as related to freezing and freeze-drying, whereas the main part of the chapter is focused on areas which are underrepresented in the pharmaceutical literature, with both overview of the literature and previously unpublished data presented. In particular, the following topics are covered: (i) Hammett acidity function and pH-equivalent (pHeq); (ii) Factors which impact apparent solid-state acidity in lyophiles; (iii) Solid-state acidity and chemical instability of lyophiles; (iv) Freezing fundamentals: quasi-liquid layer, polarity of the freeze-concentrated solution, and the Workman-Reynolds potential. Potential directions for future studies in this field are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waterman KC, Adami RC, Alsante KM, Antipas A, Arenson D, Carrier R, Hong J, Landis MS, Lombardo F, Shah J, Shalaev E, Smith SW, Wang H. Hydrolysis in pharmaceutical formulations. Pharm Dev Technol. 2002;7:113–46.

    CAS  PubMed  Google Scholar 

  2. Connors KA, Amidon GL, Stella AJ. Chemical stability of pharmaceuticals. A handbook for pharmacists. 2nd ed. New York/Chichester/Brisbane/Toronto/Singapore: Wiley; 1986. p. 847.

    Google Scholar 

  3. Flynn GL. Buffers—pH control within pharmaceutical systems. PDA J Pharm Sci Technol. 1980;34:139–62.

    CAS  Google Scholar 

  4. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of buffers in protein formulations. J Pharm Sci. 2017;106:713–33.

    CAS  PubMed  Google Scholar 

  5. Shalaev EY. The impact of buffer on processing and stability of freeze-dried dosage forms. Part. 1 solution freezing behavior. Am Pharm Rev. 2005;8:80–7.

    CAS  Google Scholar 

  6. Thakral S, Sonje J, Munjal B, Suryanarayanan R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Adv Drug Deliv Rev. 2021;173:1–19.

    CAS  PubMed  Google Scholar 

  7. Kolhe P, Amend E, Singh SK. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog. 2010;26:727–33.

    CAS  PubMed  Google Scholar 

  8. Sundaramurthi P, Suryanarayanan R. The effect of crystallizing and noncrystallizing cosolutes on succinate buffer crystallization and the consequent pH shift in frozen solutions. Pharm Res. 2011;28:374–85.

    CAS  PubMed  Google Scholar 

  9. Thorat AA, Munjal B, Geders TW, Suryanarayanan R. Freezing-induced protein aggregation - role of pH shift and potential mitigation strategies. J Control Release. 2020; https://doi.org/10.1016/j.jconrel.2020.04.033.

  10. Kohle P, Pikal-Cleland KA, Carpenter JF. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric bgalactosidase. J Pharm Sci. 2001;90:1255–68.

    Google Scholar 

  11. Pikal-Cleland KA, Rodríguez-Hornedo N, Amidon GL, Carpenter JF. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric b-galactosidase. Arch Biochem Biophys. 2000;384:398–406.

    CAS  PubMed  Google Scholar 

  12. Shalaev EY, Gatlin LA. The impact of buffer on solid-state properties and stability of freeze-dried dosage forms. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. Willey; 2010. p. 507–20.

    Google Scholar 

  13. Osterberg T, Wadsten T. Physical state of L-histidine after freeze-drying and long-term storage. Eur J Pharm. 1999;273:85–93.

    Google Scholar 

  14. Sundaramurthi P, Shalaev E, Suryanarayanan R. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions. J Phys Chem B. 2010;114:4915–23.

    CAS  PubMed  Google Scholar 

  15. Sieracki NA, Hwang HJ, Lee MK, Garner DK, Lu Y. A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Comm. 2008;7:823–5. https://doi.org/10.1039/b714446f.

    Article  CAS  Google Scholar 

  16. Vesely L, Susrisweta B, Heger D. Making good’s buffers good for freezing: the acidity changes and their elimination via mixing with sodium phosphate. Int J Pharm. 2021;593:120128. https://doi.org/10.1016/j.ijpharm.2020.120128.

    Article  CAS  PubMed  Google Scholar 

  17. Kitada K, Suda Y, Takenaka N. Acceleration and reaction mechanism of the N-Nitrosation reaction of dimethylamine with nitrite in ice. J Phys Chem A. 2017;121:5383–8. https://doi.org/10.1021/acs.jpca.7b03246.

    Article  CAS  PubMed  Google Scholar 

  18. Choi Y, Yoon H-I, Lee C, Vetráková LU, Heger D, Kim K, Kim J. Activation of periodate by freezing for the degradation of aqueous organic pollutants. Envir Sci Tech. 2018;52:5378–85. https://doi.org/10.1021/acs.est.8b00281.

    Article  CAS  Google Scholar 

  19. Kim K, Ju J, Kim B, Chung HY, Vetrakova L, Heger D, Saiz-Lopez A, Choi W, Kim J. Nitrite-induced activation of iodate into molecular iodine in frozen solution. Environ Sci Technol. 2019;53:4892–900. https://doi.org/10.1021/acs.est.8b06638.

    Article  CAS  PubMed  Google Scholar 

  20. Ju J, Kim J, Vetráková Ľ, Seo J, Heger D, Lee C, Yoon H, Kim K, Kim J. Accelerated redox reaction between chromate and phenolic pollutants during freezing. J Hazard Mater. 2017;329:330–8. https://doi.org/10.1016/j.jhazmat.2017.01.031.

    Article  CAS  PubMed  Google Scholar 

  21. Maltini E, Anese M, Shtylla I. State diagrams of some organic acid-water systems of interest in food. Cryo-Lett. 1997;18:263–8.

    CAS  Google Scholar 

  22. Fukuoka E, Makita M, Yamamura S. Glassy state of pharmaceuticals. III. Thermal properties and stability of glassy pharmaceuticals and their binary glass mixtures. Chem Pharm Bull. 1989;37:1047–50.

    CAS  Google Scholar 

  23. Li J, Chatterjee K, Medek A, Shalaev E, Zografi G. Acid-base characteristics of bromophenol blue-citrate buffer systems in the amorphous state. J Pharm Sci. 2004;93:697–712.

    CAS  PubMed  Google Scholar 

  24. Shalaev E, Johnson-Elton T, Chang L, Pikal MJ. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm Res. 2002;19:195–201.

    CAS  PubMed  Google Scholar 

  25. Stoll VS, Blanchard JS. Buffers: principles and practice. Methods Enzymol. 1990;182:24–38.

    CAS  PubMed  Google Scholar 

  26. Gokarn YR, Kras E, Nodgaard C, Dharmavaram V, Fesinmeyer RM, Hultgen H, Brych S, Remmele RL Jr, Brems DN, Hershenson S. Self-buffering antibody formulations. J Pharm Sci. 2008;97:3051–66.

    CAS  PubMed  Google Scholar 

  27. Garidel P, Pevestorf B, Bahrenburg S. Stability of buffer-free freeze-dried formulations: a feasibility study of a monoclonal antibody at high protein concentrations. Eur J Pharm Biopharm. 2015;97:125–39.

    CAS  PubMed  Google Scholar 

  28. Hammett LP, Deyrup AJ. A series of simple basic indicators. I. the acidity functions of mixtures of sulfuric and perchloric acids with water. J Am Chem Soc. 1932;54:2721–39.

    CAS  Google Scholar 

  29. Rochester CH. The application of the acidity function concept to strongly basic media. Q Rev Chem Soc. 1966;20:511–25.

    CAS  Google Scholar 

  30. Bates RG. Determination of pH. Theory and practice. 2nd ed. New York/London/Sydney/Toronto: Wiley; 1973. p. 479.

    Google Scholar 

  31. Walling C. The acid strength of surfaces. J Am Chem Soc. 1950;72:1164–8.

    CAS  Google Scholar 

  32. Paul MA, Long FA. H0 and related indicator acidity functions. Chem Rev. 1957;57:1–45.

    CAS  Google Scholar 

  33. Bates RG, Schwarzenbach G. Uber pH-werte nichtwasseriger losungen. Helv Chim Acta. 1955;38:699–716.

    CAS  Google Scholar 

  34. Glombitza BW, Oelkrug D, Schmidt PC. Surface acidity of solid pharmaceutical excipients. Part 1. Determination of the surface acidity. Eur J Pharm Biopharm. 1994;40:289–93.

    CAS  Google Scholar 

  35. Scheef CA, Schmidt PC. Influence of surface acidity of excipients on the solid state stability of pirenzepine. STP Pharm Sci. 1998;8:91–7.

    CAS  Google Scholar 

  36. Heger D, Klanova J, Klan P. Enhanced protonation of cresol red in acidic aqueous solutions caused by freezing. J Phys Chem B. 2006;110:1277–87. https://doi.org/10.1021/jp0553683.

    Article  CAS  PubMed  Google Scholar 

  37. Orii Y, Morita M. Measurement of the pH of frozen buffer solutions by using pH indicators. J Biochem. 1977;81:163–8. https://doi.org/10.1093/oxfordjournals.jbchem.a131431.

    Article  CAS  PubMed  Google Scholar 

  38. Govindarajan R, Chatterjee K, Gatlin L, Suryanarayanan R, Shalaev EY. Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems. J Pharm Sci. 2006;95:1498–510.

    CAS  PubMed  Google Scholar 

  39. Luthra SA, Shalaev EY, Medek A, Hong J, Pikal MJ. Chemical stability of amorphous materials: specific and general media effects in the role of water in the degradation of freeze-dried zoniporide. J Pharm Sci. 2012;101:3110–23.

    CAS  PubMed  Google Scholar 

  40. Mathlouthi M, Reiser P, editors. Sucrose: properties and applications. London/Glasgow/Weinheim/Tokyo/Melbourne/Madras: Blackie Academic & Professional; 1995. p. 294.

    Google Scholar 

  41. Mchedlov-Petrosyan NO, Lyubchenko IN. Ionization of sulfonephthalein dyes in organic solvents. Zhurnal Obshchei Khimii. 1987;57:1371–8.

    CAS  Google Scholar 

  42. Rossini E, Bochevarov AD, Knapp EW. Empirical conversion of pKa values between different solvents and interpretation of the parameters: application to water, acetonitrile, dimethyl sulfoxide, and methanol. ACS Omega. 2018;3:1653–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Alkhamis KA. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems (I). Int J Pharm. 2008;362:74–80.

    CAS  PubMed  Google Scholar 

  44. Lay-Fortenbery A. Investigation of factors influencing protein stability in lyophilized formulations using solid-state NMR spectroscopy. University of Kentucky; 2019, https://uknowledge.uky.edu/pharmacy_etds/105/

    Google Scholar 

  45. Chatterjee K, Shalaev EY, Suryanarayanan R, Govindarajan R. Correlation between chemical reactivity and the Hammett acidity function in amorphous solids using inversion of sucrose as a model reaction. J Pharm Sci. 2008;97:274–86.

    CAS  PubMed  Google Scholar 

  46. Wu C, Shamblin S, Varshney D, Shalaev E. Advance understanding of buffer behavior during lyophilization. In: Varshney D, Singh M, editors. Lyophilized biologics and vaccines: modality-based approaches. Springer; 2015. p. 25–42.

    Google Scholar 

  47. Vetráková Ľ, Vykoukal V, Heger D. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: is there a “pH memory” effect? Int J Pharm. 2017;530:316–25. https://doi.org/10.1016/j.ijpharm.2017.08.005.

    Article  CAS  PubMed  Google Scholar 

  48. Costantino HR, Griebenow K, Langer R, Klibnov AM. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol Bioeng. 1997;53:345–8.

    CAS  PubMed  Google Scholar 

  49. Frey MH, Opella SJ. The effect of pH on the solid-state 13C NMR spectra of histidine. J Magn Reson. 1986;66:144–7.

    CAS  Google Scholar 

  50. Munowitz M, Bachovchin WW, Herzfeld J, Dobson CM, Griffin RG. Acid-base and tautomeric equilibria in the solid state: 15N NMR spectroscopy of histidine and imidazole. J Am Chem Soc. 1982;104:1192–6.

    CAS  Google Scholar 

  51. Henry B, Tekely P, Delpuech JJ. pH and pK determinations by high-resolution solid-state 13C NMR: acid-base and tautomeric equilibria of lyophilized 1-histidine. J Am Chem Soc. 2002;124:2025–34.

    CAS  PubMed  Google Scholar 

  52. Govindarajan R, Shalaev E, Gatlin L, Suryanarayanan R. Effect of water and buffer on the Hammett acidity function in amorphous lyophiles. AMORPH 2014. The Felix Franks symposium: a celebration. Cambridge: Girton College; 2014.

    Google Scholar 

  53. Donten ML, Vande Vondele J, Hamm P. Speed limits for acid–base chemistry in aqueous solutions. Chimia. 2012;66:182–6.

    CAS  PubMed  Google Scholar 

  54. Liu WR, Langer R, Klibanov MA. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng. 1991;37:177–84.

    CAS  PubMed  Google Scholar 

  55. Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999;88:489–500.

    CAS  PubMed  Google Scholar 

  56. Pikal MJ, Dellerman KM, Roi MI, Riggin RM. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res. 1991;8:427–36.

    CAS  PubMed  Google Scholar 

  57. Shalaev EY, Lu Q, Shalaeva M, Zografi G. Acid-catalyzed inversion of sucrose in the amorphous state at very low levels of residual water. Pharm Res. 2000;17:366–70.

    CAS  PubMed  Google Scholar 

  58. Strickley RG, Visor GC, Lin L-H, Gu L. An unexpected pH effect on the stability of moexipril lyophilized powder. Pharm Res. 1989;6:971–5.

    CAS  PubMed  Google Scholar 

  59. Bell LN, Labuza TP. Potential pH implications in the freeze-dried state. Cryo-Letters. 1991;12:235–44.

    Google Scholar 

  60. Song Y, Schowen R, Borchardt RT, Topp EM. Effect of “pH” on the rate of asparagine deamidation in polymeric formulations: “pH”-rate profiles. J Pharm Sci. 2001;90:141–56.

    CAS  PubMed  Google Scholar 

  61. Lu E, Ewing S, Gatlin L, Suryanarayanan R, Shalaev E. The effect of bulking agents on the chemical stability of acid-sensitive compounds in freeze-dried formulations: sucrose inversion study. J Pharm Sci. 2009;98:3387–96.

    CAS  PubMed  Google Scholar 

  62. Alkhamis KA. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems II (effect of buffer) solid-state acidity and sucrose inversion. Drug Dev Ind Pharm. 2009;35:408–16.

    CAS  PubMed  Google Scholar 

  63. Altaani BM, Alkhamis KA, Abu Baker S, Haddad R. The relationship between the Hammett acidity and the decomposition of cefotaxime sodium in the solid state. Drug Dev Ind Pharm. 46:1632–8. https://doi.org/10.1080/03639045.2020.1813754.

  64. Glombitza BW, Schmidt PC. Surface acidity of solid pharmaceutical excipients II. Effect of the surface acidity on the decomposition rate of acetylsalicylic acid. Eur J Pharm Biopharm. 1995;41:114–9.

    CAS  Google Scholar 

  65. Gana FZ, Rashid I, Badwan A, Alkhamis KA. Determination of solid-state acidity of chitin-metal silicates and their effect on the degradation of cephalosporin antibiotics. J Pharm Sci. 2012;101:2398–407.

    CAS  PubMed  Google Scholar 

  66. Govindarajan R, Landis M, Hancock B, Gatlin LA, Suryanarayanan R, Shalaev EY. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium. AAPS PharmSciTech. 2015; https://doi.org/10.1208/s12249-014-0231-7.

  67. Hailu S, Bogner RH. Solid-state surface acidity and pH-stability profiles of amorphous quinapril hydrochloride and silicate formulations. J Pharm Sci. 2010; https://doi.org/10.1002/jps.

  68. Hammett LP. Reaction rates and indicator acidities. Chem Rev. 1935;16:67–79.

    CAS  Google Scholar 

  69. Indelli A, Mantovani G. The dissociation constants of tri- and tetrametaphosphoric acids by the rate of inversion of sucrose. Trans Faraday Soc. 1965;61:909–13.

    CAS  Google Scholar 

  70. Hsieh Y-L, Yu W, Xiang Y, Pan W, Waterman KC, Shalaev EY, Shamblin SL, Taylor LS. Impact of sertraline salt form on the oxidative stability in powder blends. Int J Pharm. 2014;461:322–30.

    CAS  PubMed  Google Scholar 

  71. Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng. 1990;37:177–84.

    Google Scholar 

  72. Costantino HR, Langer R, Klibanov AM. Aggregation of a lyophilized pharmaceutical protein, recombinant human albumin: effect of moisture and stabilization by excipients. Biotechnology (NY). 1995;13:493–6.

    CAS  Google Scholar 

  73. Schwendeman SP, Costantino HR, Gupta RK, Siber GR, Klibanov AM, Langer R. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc Natl Acad Sci U S A. 1995;92:11234–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Osterberg T, Fatouros A, Mikaelsson M. Development of a freeze-dried albumin-free formulation of recombinant factor VIII SQ. Pharm Res. 1997;14:892–8.

    CAS  PubMed  Google Scholar 

  75. Pikal MJ, Dellerman KM, Roy MI, Riggin RM. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res. 1991;8:427–36.

    CAS  PubMed  Google Scholar 

  76. Jameel F, Tchessalov S, Bjornson E, Lu X, Besman M, Pikal MJ. Development of freeze-dried biosynthetic factor VIII: I. a case study in the optimization of formulation. Pharm Dev Technol. 2009;14:687–97.

    CAS  PubMed  Google Scholar 

  77. Shalaev EY, Wang W, Gatlin LA. Rational choice of excipients for use in lyophilized formulations. In: Drugs and the pharmaceutical sciences, 175 (Protein formulation and delivery (2nd edition)). Boca Raton: CRC Press; 2008. p. 197–217.

    Google Scholar 

  78. Connors K. Chemical kinetics. The study of reaction rates in solution. New York: VCH Publishers, Inc; 1990. p. 386.

    Google Scholar 

  79. Guggenheim E, Wiseman L. Kinetic salt effects on the inversion of sucrose. Proceedings of the royal society of London, Series A: mathematical, physical and engineering sciences; 1950. p. 17–32.

    Google Scholar 

  80. Dordick RS, Clarke GA. Salt effects on the hydrolysis of sucrose. J Chem Educ. 1979;56:352.

    CAS  Google Scholar 

  81. Shamblin SL, Taylor LS, Zografi G. Mixing behavior of colyophilized binary systems. J Pharm Sci. 1998;87:694–701.

    CAS  PubMed  Google Scholar 

  82. Pethybridge A, Prue J. Kinetics salt effects and the specific influence of ions on rate constants. Prog Inorg Chem. 1972;17:327–90.

    CAS  Google Scholar 

  83. Rice J. Mathematical statistics and data analysis. 2nd ed. Belmont: Duxbury press; 1995.

    Google Scholar 

  84. Franks F, editor. Water and aqueous solutions at subzero temperatures. Water: a comprehensive treaties, vol. 7. New York: Plenum Press; 1982.

    Google Scholar 

  85. Bartels-Rausch T, Jacobi HW, Kahan TF, Thomas JL, Thomson ES, Abbatt JPD, Ammann M, Blackford JR, Bluhm H, Boxe C, Domine F, Frey MM, Gladich I, Guzmán MI, Heger D, Huthwelker T, Klán P, Kuhs WF, Kuo MH, Maus S, Moussa SG, McNeill VF, Newberg JT, Pettersson JBC, Roeselová M, Sodeau JR. A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos Chem Phys. 2014;14:1587–633. https://doi.org/10.5194/acp-14-1587-2014.

    Article  CAS  Google Scholar 

  86. Hobbs PV. Ice physics. Oxford University Press; 1975.

    Google Scholar 

  87. Petrenko VF, Whitworth RW. Physics of ice. Oxford: Oxford University Press; 1999.

    Google Scholar 

  88. Elbaum M, Lipson SG, Dash JG. Optical study of surface melting on ice. J Cryst Growth. 1993;129:491–505.

    CAS  Google Scholar 

  89. Bronshteyn VL, Steponkus PL. Calorimetric studies of freeze-induced dehydration of phospholipids. Biophys J. 1993;65:1853–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhatnagar B, Zakharov B, Fisyuk A, Wen X, Karim F, Lee K, Seryotkin Y, Mogodi M, Fitch A, Boldyreva E, Kostyuchenko A, Shalaev E. Protein/ice interaction: high-resolution synchrotron X-ray diffraction differentiates pharmaceutical proteins from lysozyme. J Phys Chem B. 2019; https://doi.org/10.1021/acs.jpcb.9b02443.

  91. Heger D, Jirkovsky J, Klan P. Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy. J Phys Chem A. 2005;109:6702–9. https://doi.org/10.1021/jp050439j.

    Article  CAS  PubMed  Google Scholar 

  92. Heger D, Klan P. Interactions of organic molecules at grain boundaries in ice: a solvatochromic analysis. J Photochem Photobiol A: Chem. 2007;187:275–84.

    CAS  Google Scholar 

  93. Hauptmann A, Hoelzl G, Loerting T. Distribution of protein content and number of aggregates in monoclonal antibody formulation after large-scale freezing. AAPS PharmSciTech. 2019;20:72.

    CAS  PubMed  Google Scholar 

  94. Authelin J-R, Rodrigues MA, Tchessalov S, Singh S, McCoy T, Wang S, Shalaev E. Freezing of biologicals revisited: scale, stability, excipients, and degradation stresses. J Pharm Sci. 2020;109:44–61.

    CAS  PubMed  Google Scholar 

  95. Workman EJ, Reynolds SE. A suggested mechanism for the generation of thunderstorm electricity. Phys Rev. 1948;74:709–709. https://doi.org/10.1103/PhysRev.74.709.

    Article  Google Scholar 

  96. Workman EJ, Reynolds SE. Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys Rev. 1950;78:254.

    CAS  Google Scholar 

  97. Conde MM, Rovere M, Gallo P. Spontaneous NaCl-doped ice at seawater conditions: focus on the mechanisms of ion inclusion. Phys Chem Chem Phys. 2017;19:9566–74. https://doi.org/10.1039/c7cp00665a.

    Article  CAS  PubMed  Google Scholar 

  98. Krausková Ľ, Procházková J, Klašková M, Filipová L, Chaloupková R, Malý S, Damborský J, Heger D. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants. Int J Pharm. 2016;509:41–9. https://doi.org/10.1016/j.ijpharm.2016.05.031.

    Article  CAS  PubMed  Google Scholar 

  99. Imrichova K, Vesely L, Gasser TM, Loerting T, Nedela V, Heger D. Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. J Chem Phys. 2019;151:014503. https://doi.org/10.1063/1.5100852.

    Article  CAS  PubMed  Google Scholar 

  100. Robinson C, Boxe CS, Guzman MI, Colussi AJ, Hoffmann MR. Acidity of frozen electrolyte solutions. J Phys Chem B. 2006;110:7613–6.

    CAS  PubMed  Google Scholar 

  101. Sola MI, Corti HR. Freezing induced electric potentials and Ph changes in aqueous-solutions of electrolytes. Anales De La Asociacion Quimica Argentina. 1993;81:483–98.

    CAS  Google Scholar 

  102. Wilson PW, Haymet ADJ. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces. J Phys Chem B. 2008;112:11750–5.

    CAS  PubMed  Google Scholar 

  103. Rastogi RP, Tripathi AK. Effect of nonionic solutes on the freezing potential of dilute ionic aqueous solutions. J Chem Phys. 1985;83:1404–5.

    CAS  Google Scholar 

  104. Gross GW. Some effects of trace inorganics on the ice/water system. In: Trace inorganics in water, vol. 73. American Chemical Society; 1968. p. 27–97

    Google Scholar 

  105. Gross GW, Wu C, Bryant L, McKee C. Concentration dependent solute redistribution at the ice/water phase boundary. II Experimental investigation. J Chem Phys. 1975;62:3085–92. https://doi.org/10.1063/1.430909.

    Article  CAS  Google Scholar 

  106. Bronshteyn VL, Chernov AA. Freezing potentials arising on solidification of dilute aqueous-solutions of electrolytes. J Cryst Growth. 1991;112:129–45.

    Google Scholar 

  107. Murase N, Franks F. Salt precipitation during the freeze-concentration of phosphate buffer solutions. Biophys Chem. 1989;34:293–300. https://doi.org/10.1016/0301-4622(89)80066-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mark Berry for his expert help in statistical analysis of the data reported in Sect. 4. Dominik Heger is thankful for the support by Czech Science Foundation via project GA 19-08239S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenyi Shalaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 America Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heger, D. et al. (2023). Beyond pH: Acid/Base Relationships in Frozen and Freeze-Dried Pharmaceuticals. In: Jameel, F. (eds) Principles and Practices of Lyophilization in Product Development and Manufacturing . AAPS Advances in the Pharmaceutical Sciences Series, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-12634-5_3

Download citation

Publish with us

Policies and ethics