Skip to main content

Treatment of Spine Disease in the Elderly: Cutting-Edge Techniques and Technologies

  • Chapter
  • First Online:
Treatment of Spine Disease in the Elderly

Abstract

Given the complex nature of spinal pathology in elderly patient populations, the effective and efficient utilization of imaging to diagnose and treat spinal disease is both immensely challenging and crucial to patient-centered care. Most often, multiple imaging modalities, in addition to a detailed clinical history and physical exam, are required to accurately diagnose and safely treat spinal disorders. Common tests include plain radiographs, computed tomography (CT), myelography, magnetic resonance imaging (MRI), nuclear medicine, dual-energy X-ray absorptiometry (DEXA), and EOS. This chapter describes the most frequently ordered spinal imaging studies and discusses the evidence-based rationale and indications for each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harada GK, Siyaji ZK, Younis S, et al. Imaging in spine surgery: current concepts and future directions. Spine Surg Relat Res. 2020;4:99–110.

    PubMed  Google Scholar 

  2. Rhee JM, Chapman JR, Norvell DC, et al. Radiological determination of postoperative cervical fusion: a systematic review. Spine (Phila Pa 1976). 2015;40:974–91.

    PubMed  Google Scholar 

  3. Venu V, Vertinsky AT, Malfair D, et al. Plain radiograph assessment of spinal hardware. Semin Musculoskelet Radiol. 2011;15:151–62.

    PubMed  Google Scholar 

  4. Chan V, Marro A, Rempel J, et al. Determination of dynamic instability in lumbar spondylolisthesis using flexion and extension standing radiographs versus neutral standing radiograph and supine MRI. J Neurosurg Spine. 2019;31:229–35.

    Google Scholar 

  5. Wood KB, Popp CA, Transfeldt EE, et al. Radiographic evaluation of instability in spondylolisthesis. Spine (Phila Pa 1976). 1994;19:1697–703.

    CAS  PubMed  Google Scholar 

  6. Burhan Janjua M, Tishelman JC, Vasquez-Montes D, et al. The value of sitting radiographs: analysis of spine flexibility and its utility in preoperative planning for adult spinal deformity surgery. J Neurosurg Spine. 2018;29:414–21.

    PubMed  Google Scholar 

  7. Yao G, Cheung JPY, Shigematsu H, et al. Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976). 2017;42:1622–8.

    PubMed  Google Scholar 

  8. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976). 2005;38(13):E803–12. https://doi.org/10.1097/BRS.0b013e318292b7b9.

    Article  Google Scholar 

  9. Rothenfluh DA, Mueller DA, Rothenfluh E, et al. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J. 2015;24:1251–8.

    PubMed  Google Scholar 

  10. Lafage R, Schwab F, Challier V, et al. Defining spino-pelvic alignment thresholds should operative goals in adult spinal deformity surgery account for age? Spine (Phila Pa 1976). 2016;41:62–8.

    PubMed  Google Scholar 

  11. Protopsaltis TS, Lafage R, Smith JS, et al. The lumbar pelvic angle, the lumbar component of the T1 pelvic angle, correlates with HRQOL, PI-LL mismatch, and it predicts global alignment. Spine (Phila Pa 1976). 2018;43:681–7.

    PubMed  Google Scholar 

  12. Koller H, Pfanz C, Meier O, et al. Factors influencing radiographic and clinical outcomes in adult scoliosis surgery: a study of 448 European patients. Eur Spine J. 2016;25:532–48.

    PubMed  Google Scholar 

  13. Rubin GD. Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology. 2014;273:S45–74.

    PubMed  Google Scholar 

  14. McCulloch PT, France J, Jones DL, et al. Helical computed tomography alone compared with plain radiographs with adjunct computed tomography to evaluate the cervical spine after high-energy trauma. J Bone Joint Surg Ser A. 2005;87:2388–94.

    Google Scholar 

  15. Takami M, Nohda K, Sakanaka J, et al. Usefulness of full spine computed tomography in cases of high-energy trauma: a prospective study. Eur J Orthop Surg Traumatol. 24 Suppl 1:S167–71. https://doi.org/10.1007/s00590-013-1268-0.

  16. Sartoris DJ, Resnick D. Computed tomography of the spine: an update and review. Crit Rev Diagn Imaging. 1987;27:271–96.

    CAS  PubMed  Google Scholar 

  17. Shah LM, Ross JS. Imaging of spine trauma. Neurosurgery. 2016;79:626–42.

    PubMed  Google Scholar 

  18. Mao JZ, Agyei JO, Khan A, et al. Technologic evolution of navigation and robotics in spine surgery: a historical perspective. World Neurosurg. 2021;145:159–67.

    PubMed  Google Scholar 

  19. Adamczak SE, Bova FJ, Hoh DJ. Intraoperative 3D computed tomography: spine surgery. Neurosurg Clin N Am. 2017;28:585–94.

    PubMed  Google Scholar 

  20. Hida K, Iwasaki Y, Koyanagi I, et al. Bone window computed tomography for detection of dural defect associated with cervical ossified posterior longitudinal ligament. Neurol Med Chir. 1997;37:173–6.

    CAS  Google Scholar 

  21. Chen Y, Guo Y, Chen D, et al. Diagnosis and surgery of ossification of posterior longitudinal ligament associated with dural ossification in the cervical spine. Eur Spine J. 2009;18:1541–7.

    PubMed  PubMed Central  Google Scholar 

  22. Wang Q, Wang C, Zhang X, et al. Correlation of vertebral trabecular attenuation in Hounsfield units and the upper instrumented vertebra with proximal junctional failure after surgical treatment of degenerative lumbar disease. J Neurosurg Spine. 2020;1–8.

    Google Scholar 

  23. Duan PG, Mummaneni PV, Rivera J, et al. The association between lower Hounsfield units of the upper instrumented vertebra and proximal junctional kyphosis in adult spinal deformity surgery with a minimum 2-year follow-up. Neurosurg Focus. 2020;49:1–7.

    Google Scholar 

  24. Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine. 2019;44:E239–44.

    PubMed  Google Scholar 

  25. Verma SK, Singh PK, Agrawal D, et al. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg. 2016;30:658–61.

    CAS  PubMed  Google Scholar 

  26. Pitteloud N, Gamulin A, Barea C, et al. Radiation exposure using the O-arm® surgical imaging system. Eur Spine J. 2017;26:651–7.

    PubMed  Google Scholar 

  27. Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique. Spine (Phila Pa 1976). 2018;43:E373–8.

    PubMed  Google Scholar 

  28. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190–1.

    CAS  Google Scholar 

  29. Edelman RR, Shoukimas GM, Stark DD, et al. High-resolution surface-coil imaging of lumbar disk disease. Am J Roentgenol. 1985;144:1123–9.

    CAS  Google Scholar 

  30. Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166:193–9.

    CAS  PubMed  Google Scholar 

  31. Mok FPS, Samartzis D, Karppinen J, et al. Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J. 2016;16:32–41.

    PubMed  Google Scholar 

  32. Jensen RK, Kent P, Jensen TS, et al. The association between subgroups of MRI findings identified with latent class analysis and low back pain in 40-year-old Danes. BMC Musculoskelet Disord. 2018;19(1):62. https://doi.org/10.1186/s12891-018-1978-x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dudli S, Fields AJ, Samartzis D, et al. Pathobiology of Modic changes. Eur Spine J. 2016;25:3723–34.

    PubMed  Google Scholar 

  34. Brinckman MA, Chau C, Ross JS. Marrow edema variability in acute spine fractures. Spine J. 2015;15:454–60.

    PubMed  Google Scholar 

  35. Joshi A, Kulkarni S, Dedhia T, et al. Role of 3T MRI in evaluation of bone marrow changes in spine in various diseases. J Assoc Physicians India. 2019;67:46–51.

    PubMed  Google Scholar 

  36. Donovan Post MJ, Sze G, Quencer RM, et al. Gadolinium-enhanced MR in spinal infection. J Comput Assist Tomogr. 1990;14:721–9.

    Google Scholar 

  37. Defroda SF, Depasse JM, Eltorai AEM, et al. Evaluation and management of spinal epidural abscess. J Hosp Med. 2016;11:130–5.

    PubMed  Google Scholar 

  38. Numaguchi Y, Rigamonti D, Rothman MI, et al. Spinal epidural abscess: evaluation with gadolinium-enhanced MR imaging. Radiographics. 1992;13(3):545–59. https://doi.org/10.1148/radiographics.13.3.8316663.

    Article  Google Scholar 

  39. Henninger B, Kaser V, Ostermann S, et al. Cervical disc and ligamentous injury in hyperextension trauma: MRI and intraoperative correlation. J Neuroimaging. 2020;30:104–9.

    PubMed  Google Scholar 

  40. Crosby CG, Even JL, Song Y, et al. Diagnostic abilities of magnetic resonance imaging in traumatic injury to the posterior ligamentous complex: the effect of years in training. Spine J. 2011;11:747–53.

    PubMed  Google Scholar 

  41. Vaccaro AR, Lee JY, Schweitzer KM, et al. Assessment of injury to the posterior ligamentous complex in thoracolumbar spine trauma. Spine J. 2006;6:524–8.

    PubMed  Google Scholar 

  42. Arnold PM. Commentary: Validating the use of magnetic resonance imaging in making treatment decisions in patients with spine trauma. Spine J. 2011;11:754–5.

    PubMed  Google Scholar 

  43. Nourian AA, Cunningham CM, Bagheri A, et al. Effect of anatomic variability and level of approach on perioperative vascular complications with anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2016;41:E73–7.

    PubMed  Google Scholar 

  44. Mai HT, Schneider AD, Alvarez AP, et al. Anatomic considerations in the lateral transpsoas interbody fusion: the impact of age, sex, BMI, and Scoliosis. Clin Spine Surg. 2019;32:215–21.

    PubMed  Google Scholar 

  45. Louie PK, Narain AS, Hijji FY, et al. Radiographic analysis of psoas morphology and its association with neurovascular structures at L4–5 with reference to lateral approaches. Spine (Phila Pa 1976). 2017;42:E1386–92.

    PubMed  Google Scholar 

  46. Kepler CK, Bogner EA, Herzog RJ, et al. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20:550–6.

    PubMed  Google Scholar 

  47. Ali HI, Saleh A. Lumbar spine MRI axial loading in patients with degenerative spine pathologies: its impact on the radiological findings and treatment decision. Egypt J Radiol Nucl Med. 2015;46:1065–9.

    Google Scholar 

  48. Hiwatashi A, Danielson B, Moritani T, et al. Axial loading during MR imaging can influence treatment decision for symptomatic spinal stenosis. Am J Neuroradiol. 2004;25:170–4.

    PubMed  PubMed Central  Google Scholar 

  49. Algin O, Turkbey B. Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. Am J Neuroradiol. 2013;34:14–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chhabra A, Andreisek G, Soldatos T, et al. MR neurography: past, present, and future. Am J Roentgenol. 2011;197:583–91.

    Google Scholar 

  51. Rhodes CJ. Magnetic resonance spectroscopy. Sci Prog. 2017;100:241–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Russo RJ, Costa HS, Silva PD, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376:755–64.

    PubMed  Google Scholar 

  53. Beam AS, Moore KG, Gillis SN, et al. GBCAs and risk for nephrogenic systemic fibrosis: a literature review. Radiol Technol. 2017;88:583–9.

    PubMed  Google Scholar 

  54. Nguyen XV, Tahir S, Bresnahan BW, et al. Prevalence and financial impact of claustrophobia, anxiety, patient motion, and other patient events in magnetic resonance imaging. Top Magn Reson Imaging. 2020;29:125–30.

    PubMed  Google Scholar 

  55. Thorpe S, Salkovskis PM, Dittner A. Claustrophobia in MRI: the role of cognitions. Magn Reson Imaging. 2008;26:1081–8.

    PubMed  Google Scholar 

  56. Berg L, Hellum C, Gjertsen Ø, et al. Do more MRI findings imply worse disability or more intense low back pain? A cross-sectional study of candidates for lumbar disc prosthesis. Skeletal Radiol. 2013;42:1593–602.

    PubMed  Google Scholar 

  57. Suri P, Boyko EJ, Goldberg J, et al. Longitudinal associations between incident lumbar spine MRI findings and chronic low back pain or radicular symptoms: retrospective analysis of data from the longitudinal assessment of imaging and disability of the back (LAIDBACK). BMC Musculoskelet Disord. 2017;15:152. https://doi.org/10.1186/1471-2474-15-152.

    Article  Google Scholar 

  58. Chang CY, Gill CM, Joseph Simeone F, et al. Comparison of the diagnostic accuracy of 99 m-Tc-MDP bone scintigraphy and 18F-FDG PET/CT for the detection of skeletal metastases. Acta Radiol. 2016;57:58–65.

    PubMed  Google Scholar 

  59. Whalen JL, Brown ML, McLeod RI, et al. Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine (Phila Pa 1976). 1991;16:193–7.

    CAS  PubMed  Google Scholar 

  60. Datz FL. Indium-111-labeled leukocytes for the detection of infection: current status. Semin Nucl Med. 1994;24:92–109.

    CAS  PubMed  Google Scholar 

  61. Brusko GD, Perez-Roman RJ, Tapamo H, et al. Preoperative SPECT imaging as a tool for surgical planning in patients with axial neck and back pain. Neurosurg Focus. 2019;47(6):E19. https://doi.org/10.3171/2019.9.FOCUS19648.

    Article  PubMed  Google Scholar 

  62. Tender GC, Davidson C, Shields J, et al. Primary pain generator identification by CT-SPECT in patients with degenerative spinal disease. Neurosurg Focus. 2019;47:1–6.

    Google Scholar 

  63. Kato S, Demura S, Matsubara H, et al. Utility of bone SPECT/CT to identify the primary cause of pain in elderly patients with degenerative lumbar spine disease. J Orthop Surg Res. 2019;14(1):185. https://doi.org/10.1186/s13018-019-1236-4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ratnayake R, Mundis GM, Shahidi B, et al. 264. Assessment of impact of single photon emission computed tomography (SPECT) on management of degenerative cervical and lumbar disease: a multi-institution survey of spine surgeons. Spine J. 2020;20:S130–1.

    Google Scholar 

  65. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group. World Health Organization—technical report series, vol. 843. Geneva: WHO; 1994. p. 1–129.

    Google Scholar 

  66. Gupta A, Upadhyaya S, Patel A, et al. DEXA sensitivity analysis in patients with adult spinal deformity. Spine J. 2020;20:174–80.

    PubMed  Google Scholar 

  67. Francis RM, Baillie SP, Chuck AJ, et al. Acute and long-term management of patients with vertebral fractures. QJM. 2004;97:63–74.

    CAS  PubMed  Google Scholar 

  68. Mears SC, Kates SL. A guide to improving the care of patients with fragility fractures, edition 2. Geriatr Orthop Surg Rehabil. 2015;6:58–120.

    PubMed  PubMed Central  Google Scholar 

  69. Karikari IO, Metz LN. Preventing pseudoarthrosis and proximal junctional kyphosis: how to deal with the osteoporotic spine. Neurosurg Clin N Am. 2018;29:365–74.

    PubMed  Google Scholar 

  70. Seki S, Hirano N, Kawaguchi Y, et al. Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis. Eur Spine J. 2017;26:2121–7.

    PubMed  Google Scholar 

  71. Safaee MM, Osorio JA, Verma K, et al. Proximal junctional kyphosis prevention strategies: a video technique guide. Oper Neurosurg. 2017;13:581–5.

    Google Scholar 

  72. Legaye J, Duval-Beaupère G, Hecquet J, et al. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Roussouly P, Gollogly S, Berthonnaud E, et al. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976). 2005;30:346–53.

    PubMed  Google Scholar 

  74. Jackson RP, McManus AC. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age5 sex, and size: a prospective controlled clinical study. Spine (Phila Pa 1976). 1994;19:1611–8.

    CAS  PubMed  Google Scholar 

  75. Redmond JM, Gupta A, Nasser R, et al. The hip-spine connection: understanding its importance in the treatment of hip pathology. Orthopedics. 2015;38:49–55.

    PubMed  Google Scholar 

  76. Buckland AJ, Vigdorchik J, Schwab FJ, et al. Acetabular anteversion changes due to spinal deformity correction: bridging the gap between hip and spine surgeons. J Bone Joint Surg Am. 2014;97:1913–20.

    Google Scholar 

  77. Buckland AJ, Steinmetz L, Zhou P, et al. Spinopelvic compensatory mechanisms for reduced hip motion (ROM) in the setting of hip osteoarthritis. Spine Deform. 2019;7:923–8.

    PubMed  Google Scholar 

  78. Buckland AJ, Abotsi EJ, Vasquez-Montes D, et al. Lumbar spine degeneration and flatback deformity alter sitting-standing spinopelvic mechanics—implications for total hip arthroplasty. J Arthroplasty. 2020;35:1036–41.

    PubMed  Google Scholar 

  79. Melhem E, Assi A, El Rachkidi R, et al. EOS® biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop. 2016;10:1–14.

    PubMed  PubMed Central  Google Scholar 

  80. Chaibi Y, Cresson T, Aubert B, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15:457–66.

    CAS  PubMed  Google Scholar 

  81. Kim SB, Heo YM, Hwang CM, et al. Reliability of the EOS imaging system for assessment of the spinal and pelvic alignment in the sagittal plane. Clin Orthop Surg. 2018;10:500–7.

    PubMed  PubMed Central  Google Scholar 

  82. Vidal C, Ilharreborde B, Azoulay R, et al. Reliability of cervical lordosis and global sagittal spinal balance measurements in adolescent idiopathic scoliosis. Eur Spine J. 2013;22:1362–7.

    PubMed  PubMed Central  Google Scholar 

  83. Michael N, Carry P, Erickson M, et al. Spine and thoracic height measurements have excellent interrater and intrarater reliability in patients with early onset scoliosis. Spine (Phila Pa 1976). 2018;43:270–4.

    PubMed  Google Scholar 

  84. Hasegawa K, Okamoto M, Hatsushikano S, et al. Difference in whole spinal alignment between supine and standing positions in patients with adult spinal deformity using a new comparison method with slot-scanning three-dimensional X-ray imager and computed tomography through digital reconstructed radiography. BMC Musculoskelet Disord. 2018;19(1):437. https://doi.org/10.1186/s12891-018-2355-5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tarpada SP, Cho W, Chen F, et al. Utility of supine lateral radiographs for assessment of lumbar segmental instability in degenerative lumbar spondylolisthesis. Spine. 2018;43:1275–80.

    PubMed  Google Scholar 

  86. Yasuda T, Hasegawa T, Yamato Y, et al. Effect of position on lumbar lordosis in patients with adult spinal deformity. J Neurosurg Spine. 2018;29:530–4.

    PubMed  Google Scholar 

  87. Segebarth B, Kurd MF, Haug PH, et al. Routine upright imaging for evaluating degenerative lumbar stenosis: incidence of degenerative spondylolisthesis missed on supine MRI. J Spinal Disord Tech. 2015;28:394–7.

    PubMed  Google Scholar 

  88. Finkenstaedt T, Del Grande F, Bolog N, et al. Correlation of listhesis on upright radiographs and central lumbar spinal canal stenosis on supine MRI: is it possible to predict lumbar spinal canal stenosis? Skeletal Radiol. 2018;47:1269–75.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Eastlack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reid, D.B.C., Eastlack, R.K. (2023). Treatment of Spine Disease in the Elderly: Cutting-Edge Techniques and Technologies. In: Fu, KM.G., Wang, M.Y., Virk, M.S., Dimar II, J.R., Mummaneni, P.V. (eds) Treatment of Spine Disease in the Elderly. Springer, Cham. https://doi.org/10.1007/978-3-031-12612-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12612-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12611-6

  • Online ISBN: 978-3-031-12612-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics