Skip to main content

Is There a Fifth Force?

  • Chapter
  • First Online:
Case Studies in Experimental Physics

Abstract

The Fifth Force was a proposed modification of Newton’s Law of Universal Gravitation. It was suggested by three tantalizing pieces of evidence; the difference between measurements of G, the universal gravitational constant In the laboratory and the field, a two- or three-sigma energy dependence on the CP violating parameters in Ko meson decay, and a reanalysis of the Eötvös experiment which showed a dependence on the substances being tested. This provided grounds for experimental pursuit. Although the hypothesis involved both a distance and composition dependence, we will discuss only the latter. The first two experiments gave discordant results which naturally led to further experimentation. This subsequent pursuit argued very persuasively that there is no Fifth Force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The other four forces were the strong, or nuclear, force, the electromagnetic force, the weak force, and the gravitational force.

  2. 2.

    For a more details see the first-person account by Ephraim Fischbach in Franklin and Fischbach (2016, Chap. 6).

  3. 3.

    For ordinary (baryonic) matter such as considered here, the baryon number is just the sum of the protons and neutrons adjusted to take account of the relative occurrence of isotopes. For the details on how to deal with isotopes and compounds see Fischbach and Talmadge (1999, 19–26).

  4. 4.

    See Franklin and Laymon (2019, Chap. 4) for an account of this experiment and its history.

  5. 5.

    For a review of these constraints see Franklin and Fischbach (2016, pp. 8–9), De Rujula (1986b), and Fischbach and Talmadge (1999, pp. 61–63).

  6. 6.

    For a review of the sign problem and the extensive discussion involved see Fischbach and Talmadge (1999, pp. 8–9) and Franklin and Fischbach (2016, pp. 30–31, 180–181). And for the imprimatur eventually afforded to Fischbach’s reanalysis of the Eötvös data see De Rujala (1986b, pp. 218–220), Fischbach et al., (1988, p. 29), and Franklin and Fischbach (2016, pp. 25–26).

  7. 7.

    See Bizzeti (1987, 82–84) for elaboration along these lines.

  8. 8.

    Faller later remarked that the relatively modest modifications of his apparatus took six months to complete.

  9. 9.

    These were tests of the composition dependence of the Fifth Force. There were also experimental tests of the distance dependence. These also gave discordant results, which were later resolved. For details see Franklin and Fischbach (2016, pp. 66–80). We will concentrate here on the composition dependence.

  10. 10.

    This was the result presented at the Moriond Workshop. It used α = 0.01 and λ = 100 m, a more realistic estimate of the Fifth Force, than that used in the Physical Review Letters paper, which used α = 0.001. Fischbach used 0.007 and Thieberger used 0.008.

  11. 11.

    For a comprehensive review see Franklin and Fischbach (2016, 49–79) and Fischbach and Talmadge (1999, 146–177).

  12. 12.

    See Bizzeti (1987) and Bizzeti et al. (1988, 1989a, 1989b, 1990).

  13. 13.

    Franklin was present at the conference.

  14. 14.

    See Fischbach and Talmadge (1999, pp. 213–214), Franklin and Fischbach (2016, pp. 204–208), and for the curious and unexplained correlation of the baryon-to-mass ratios and charge-to-mass ratios see Hall et al. (1991).

  15. 15.

    For details on these experiments see Franklin and Fischbach (2016, Chap. 5).

  16. 16.

    For an extensive review and analysis of one very distinguished line of historical origin see Franklin and Laymon (2019, Chaps. 2–4).

  17. 17.

    In 2021, however, Fischbach and his collaborators proposed a revival of the search for the Fifth Force with recommended modifications. “Indications of a possible composition-dependent fifth force, based on a reanalysis of the Eötvös experiment, have not been supported by a number of modern experiments. Here, we argue that searching for a composition-dependent fifth force necessarily requires data from experiments in which the acceleration differences of three or more independent pairs of test samples of varying composition are determined. We suggest that a new round of fifth-force experiments is called for, in each of which three or more different pairs of samples are compared” (Fischbach et al., 2021).

References

  • Adelberger, E. G., Stubbs, C. W., Heckel, B. R., Su, Y., Swanson, H. E., Smith, G., Gundlach, J. H., & Rogers, W. F. (1990). Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1 μeV? Physical Review D, 42, 3267–3292.

    Google Scholar 

  • Bennett, W. R. (1989). Modulated-source Eӧtvӧs experiment at little goose lock. Physical Review Letters, 62, 365–368.

    Article  ADS  Google Scholar 

  • Bizzeti, P. G. (1987). Forces on a floating body: Another way to search for long-range, B-dependent interactions. In O. Fackler, & T. T. Van Moriond (Eds.), Moriond Workshop (pp. 591–598). Editions Frontieres.

    Google Scholar 

  • Bizzeti, P. G., Bizzeti-Sona, A. M., Fazzini, T., Perego, A., & Taccetti, N. (1988). New search for the ‘fifth force’ with the floating-body method: Status of the Vallambrosa experiment. In O. Fackler, & T. V. Thanh (Eds.), 5th Force Neutrino Physics: Eighth Moriond Workshop (pp. 511–524). Editions Frontieres.

    Google Scholar 

  • Bizzeti, P. G., Bizzeti-Sona, A. M., Perego, A., & Taccetti, N. (1989a). Search for a composition dependent fifth force: Results of the Vallambrosa experiemnt. In Moriond Workshop, Monriond. Editions Frontieres.

    Google Scholar 

  • Bizzeti, P. G., Bizzeti-Sona, A. M., Fazzini, T., Perego, A., & Taccetti, N. (1989b). Search for a composition-dependent fifth force. Physical Review Letters, 62, 2901–2904.

    Article  ADS  Google Scholar 

  • Bizzeti, P. G., Bizzeti-Sona, A. M., Perego, A., & Taccetti, N. (1990). Recent tests of the Vallambrosa experiment. In O. Fackler, & J. Tran Than Van (Eds.), Moriond Workshop (pp. 263–268). Editions Frontieres.

    Google Scholar 

  • Boynton, P. E., Crosby, D., & Newman, R. D. (1987). Search for an intermediate-range composition-dependent force. Physical Review Letters, 59, 1385–1389.

    Article  ADS  Google Scholar 

  • Braginskii, V. B., & Panov, V. I. (1972). Verification of the equivalence of inertial and gravitational mass. JETP Letters, 34, 463–466.

    ADS  Google Scholar 

  • Cowsik, R., Krishnan, N., Tandon, S. N., & Unnikrishnan, S. (1990). Strength of intermediate-range forces coupling to isospin. Physical Review Letters, 64, 336–339.

    Article  ADS  Google Scholar 

  • De Rujula, A. (1986a). Are there more than four. Nature, 323, 760–761.

    Article  ADS  Google Scholar 

  • De Rujula, A. (1986b). On weaker forces than gravity. Physics Letters B, 180, 213–220.

    Article  ADS  Google Scholar 

  • Eckhardt, D. H. (1986). Comment on ‘Reanalysis of the Eӧtvӧs experiment.’ Physical Review Letters, 57, 2868.

    Article  ADS  Google Scholar 

  • Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., & Aronson, S. H. (1986a). Reanalysis of the Eotvos experiment. Physical Review Letters, 56, 3–6.

    Google Scholar 

  • Fischbach, E., Aronson, S. H., & Talmadge, C. (1986b). Response to Eckhardt. Physical Review Letters, 57, 2869.

    Article  ADS  Google Scholar 

  • Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., & Aronson, S. H. (1988). Long-range forces and the Eötvös experiment. Annals of Physics, 183, 1–89.

    Article  ADS  Google Scholar 

  • Fischbach, E., & Talmadge, C. L. (1999). The search for non-Newtonian gravity. Springer.

    Book  Google Scholar 

  • Fischbach, E., Gruenwald, J. T., Krause, D. E., McDuffie, M. H., Mueterthies, M. J., & Scarlett, C. Y. (2021). Significance of composition-dependent effects in fifth-force searches. Physics Letters A, 399, 1276300.

    Google Scholar 

  • Fitch, V. L., Isaila, M. V., & Palmer, M. A. (1988). Limits on the existence of a material-dependent intermediate-range force. Physical Review Letters, 60, 1801–1804.

    Article  ADS  Google Scholar 

  • Franklin, A., & Fischbach, E. (2016). The rise and fall of the fifth force. Springer.

    Book  Google Scholar 

  • Franklin, A., & Laymon, R. (2019). Measuring nothing, repeatedly. Morgan and Claypool.

    Google Scholar 

  • Hall, A. M., Armbruster, H., Fischbach, E., & Talmadge, C. (1991). Is the Eotvos experiment sensitive to spin? In W.-Y. P. Hwang, et al. (Eds.), Progress in High Energy Physics (pp. 325–339). North Holland.

    Google Scholar 

  • Heckel, B. R. (1989). Experimental bounds on interactions mediated by ultralow-mass Bosons. Physical Review Letters, 63, 2705–2708.

    Article  ADS  Google Scholar 

  • Hoskins, J. K., Newman, R. D., Spero, R., & Schultz, J. (1985). Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Physical Review D, 32, 3084–3095.

    Google Scholar 

  • Kuroda, K., & Mio, N. (1990). Limits on a possible composition-dependent force by a Galilean experiment. Physical Review D, 42, 3903–3907.

    Article  ADS  Google Scholar 

  • Nelson, P. G., Graham, D. M., & Newman, R. D. (1990). Search for an intermediate-range composition-dependent force coupling to N-Z. Physical Review D, 42, 963–976.

    Article  ADS  Google Scholar 

  • Niebauer, T. M., McHugh, M. P., & Faller, J. E. (1987). Galilean test for the fifth force. Physical Review Letters, 59, 609–612.

    Article  ADS  Google Scholar 

  • Raab, F. J., Adelberger, E. G., Gundlach, J., & Stubbs, C. (1987). Search for an intermediate-range interaction: Results of the Eot-Wash I experiment. In O. Fackler, & J. Tran Than Van (Eds.), New and Exotic Phenomena: Seventh Moriond Workshop. Editions Frontieres.

    Google Scholar 

  • Roll, P. G., Krotkov, R., & Dicke, R. H. (1964). The equivalence of inertial and passive gravitational mass. Annals of Physics, 26, 442–517.

    Article  ADS  MathSciNet  Google Scholar 

  • Schlamminger, S., Choi, K. Y., Wagner, T. A., Gundlach, J. H., & Adelberger, E. G. (2008). Test of the equivalence principle using a rotating torsion balance. Physical Review Letters, 100, 041101-041101–041101-041104.

    Google Scholar 

  • Schwarzschild, B. (1986). Reanalysis of old Eötvös data suggests 5th force … to some. Physics Today, 39(Lusignoli), 17–20.

    Google Scholar 

  • Speake, C. C., & Quinn, T. J. (1988). Search for a short-range, isospin coupling component of the Fifth Force with the use of a beam balance. Physical Review Letters, 61, 1340–1343.

    Google Scholar 

  • Spero, R., Hoskins, J. K., Newman, R., Pellam, J., & Schultz, J. (1980). Tests of the gravitational inverse-square law at laboratory distances. Physical Review Letters, 44, 1645–1648.

    Article  ADS  Google Scholar 

  • Stubbs, C. W., Adelberger, E. G., Raab, F. J., Gundlach, J. H., Heckel, B. R., McMurry, K. D., Swanson, H. E., & Watanabe, R. (1987). Search for an intermediate-range interaction. Physical Review Letters, 58(11), 1070.

    Google Scholar 

  • Stubbs, C. W. (1989). Limits on composition-dependent interactions using a laboratory source: Is there a “Fifth Force” coupled to isospin? Physical Review Letters, 62, 609–612.

    Article  ADS  Google Scholar 

  • Su, Y., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., Harris, M., Smith, G. L., & Swanson, H. E. (1994). New tests of the universality of free fall. Physical Review D, 50(6), 3614.

    Google Scholar 

  • Talmadge, C., Aronson, S. H., & Fischbach, E. (1986). Effects of local mass anomalies in Eotvos type experiements. In T. T. Van (Ed.), Moriond Workshop. Editions Frontieres.

    Google Scholar 

  • Thieberger, P. (1987a). Search for a new force. Brookhaven National Laboratory.

    Google Scholar 

  • Thieberger, P. (1987b). Search for a substance-dependent force with a new differential accelerometer. Physical Review Letters, 58, 1066–1069.

    Article  ADS  Google Scholar 

  • Thieberger, P. (1989). Thieberger replies. Physical Review Letters, 62, 2333.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Franklin .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laymon, R., Franklin, A. (2022). Is There a Fifth Force?. In: Case Studies in Experimental Physics. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-12608-6_4

Download citation

Publish with us

Policies and ethics