Skip to main content

Cucumber: Renewable-Aware Admission Control for Delay-Tolerant Cloud and Edge Workloads

  • 727 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13440)


The growing electricity demand of cloud and edge computing increases operational costs and will soon have a considerable impact on the environment. A possible countermeasure is equipping IT infrastructure directly with on-site renewable energy sources. Yet, particularly smaller data centers may not be able to use all generated power directly at all times, while feeding it into the public grid or energy storage is often not an option. To maximize the usage of renewable excess energy, we propose Cucumber, an admission control policy that accepts delay-tolerant workloads only if they can be computed within their deadlines without the use of grid energy. Using probabilistic forecasting of computational load, energy consumption, and energy production, Cucumber can be configured towards more optimistic or conservative admission. We evaluate our approach on two scenarios using real solar production forecasts for Berlin, Mexico City, and Cape Town in a simulation environment. For scenarios where excess energy was actually available, our results show that Cucumber’s default configuration achieves acceptance rates close to the optimal case and causes 97.0% of accepted workloads to be powered using excess energy, while more conservative admission results in 18.5% reduced acceptance at almost zero grid power usage.


  • admission control
  • on-site renewable energy
  • load prediction
  • resource management
  • green computing
  • sustainability

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-12597-3_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-12597-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.


  2. 2.

  3. 3.

  4. 4.

  5. 5.

    DeepAR parameters: GRU, 3 Layers, 64 nodes, 0.1 Dropout; 20–30 min training time on commodity hardware.

  6. 6.


  1. Acun, B., et al.: A holistic approach for designing carbon aware datacenters. arXiv:2201.10036 [cs.DC] (2022)

  2. Aksanli, B., Venkatesh, J., Zhang, L., Rosing, T.: Utilizing green energy prediction to schedule mixed batch and service jobs in data centers. In: HotPower 2011 (2011).

  3. Alencar, D.B., de Mattos Affonso, C., Oliveira, R.C.L., Rodríguez, J.L.M., Leite, J.C., Filho, J.C.R.: Different models for forecasting wind power generation: case study. Energies 10 (2017).

  4. Bank, W.: State and trends of carbon pricing 2020. Technical report. World Bank, Washington, DC (2020)

    Google Scholar 

  5. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 40(12) (2007).

  6. Bright, J.M., Killinger, S., Lingfors, D., Engerer, N.A.: Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems. Solar Energy 168 (2018).

  7. Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable server response time for web accesses. In: WWW. ACM (2001).

  8. Chien, A.A., Zhang, C., Nguyen, H.D.: Zero-carbon cloud: research challenges for datacenters as supply-following loads. Technical report CS-TR-2019-08. University of Chicago (2019)

    Google Scholar 

  9. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., Friday, A.: The climate impact of ICT: a review of estimates, trends and regulations. arXiv:2102.02622 [physics.soc-ph] (2021)

  10. Goiri, I., et al.: Matching renewable energy supply and demand in green datacenters. Ad Hoc Netw. 25 (2015).

  11. Gontarska, K., Geldenhuys, M., Scheinert, D., Wiesner, P., Polze, A., Thamsen, L.: Evaluation of load prediction techniques for distributed stream processing. In: International Conference on Cloud Engineering (IC2E). IEEE (2021).

  12. Google: 24/7 by 2030: Realizing a carbon-free future. Technical report, Google (2020)

    Google Scholar 

  13. Hazemi, F.A.: A hybrid green policy for admission control in web-based applications. In: SoftCOM. IEEE (2013).

  14. Hirsch, A., Parag, Y., Guerrero, J.: Microgrids: a review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 90 (2018).

  15. Kallio-Myers, V., Riihelä, A., Lahtinen, P., Lindfors, A.: Global horizontal irradiance forecast for Finland based on geostationary weather satellite data. Solar Energy 198 (2020).

  16. Khalyasmaa, A.I., et al.: Prediction of solar power generation based on random forest regressor model. In: SIBIRCON (2019).

  17. Koller, R., Verma, A., Neogi, A.: Wattapp: an application aware power meter for shared data centers (2010).

  18. Kordkheili, R.A., Hinkle, T., Gandhi, M., der Pas, N.V., Davari, P.: On-site power generation for data centers. Technical report, Sust. Digital Infrastructure Alliance (2021)

    Google Scholar 

  19. Li, Q., et al.: Prediction of power generation of two 30 kw horizontal axis wind turbines with gaussian model. Energy 231 (2021).

  20. Li, W., et al.: On enabling sustainable edge computing with renewable energy resources. IEEE Commun. Mag. 56(5) (2018).

  21. Liu, L., Sun, H., Li, C., Li, T., Xin, J., Zheng, N.: Managing battery aging for high energy availability in green datacenters. IEEE Trans. Parallel Distrib. Syst. 28(12) (2017).

  22. Luo, J., Rao, L., Liu, X.: Temporal load balancing with service delay guarantees for data center energy cost optimization. IEEE Trans. Parallel Distrib. Syst. 25(3) (2014).

  23. Masanet, E., Shehabi, A., Lei, N., Smith, S., Koomey, J.: Recalibrating global data center energy-use estimates. Science 367 (2020).

  24. Radovanovic, A., Chen, B., Talukdar, S., Roy, B., Duarte, A., Shahbazi, M.: Power modeling for effective datacenter planning and compute management. IEEE Trans. Smart Grid (2021).

  25. Radovanovic, A., et al.: Carbon-aware computing for datacenters. IEEE Trans. Power Syst. (2022).

    CrossRef  Google Scholar 

  26. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3) (2020).

  27. Toosi, A.N., Qu, C., de Assunção, M.D., Buyya, R.: Renewable-aware geographical load balancing of web applications for sustainable data centers. J. Netw. Comput. Appl. 83 (2017).

  28. Verbois, H., Rusydi, A., Thiery, A.: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting. Solar Energy 173 (2018).

  29. Weng, Q., et al.: MLaaS in the wild: workload analysis and scheduling in large-scale heterogeneous GPU clusters. In: NSDI, vol. 22 (2022)

    Google Scholar 

  30. Wiesner, P.: Artifact and instructions to generate experimental results for the Euro-Par 2022 paper: “cucumber: renewable-aware admission control for delay-tolerant cloud and edge workloads”. Figshare:

  31. Wiesner, P., Behnke, I., Scheinert, D., Gontarska, K., Thamsen, L.: Let’s wait awhile: how temporal workload shifting can reduce carbon emissions in the cloud. In: Middleware2021. ACM (2021).

  32. Wiesner, P., Thamsen, L.: LEAF: simulating large energy-aware fog computing environments. In: 5th International Conference on Fog and Edge Computing (ICFEC). IEEE (2021).

  33. Yuan, H., Bi, J., Tan, W., Li, B.H.: CAWSAC: cost-aware workload scheduling and admission control for distributed cloud data centers. IEEE Trans. Autom. Sci. Eng. 13(2) (2016).

  34. Zhang, H., Liu, Y., Yan, J., Han, S., Li, L., Long, Q.: Improved deep mixture density network for regional wind power probabilistic forecasting. IEEE Trans. Power Syst. 35(4) (2020).

Download references

Acknowledgments and Data Availability Statement

The datasets and code generated and analyzed in this paper are available in the Figshare repository: [30].

We sincerely thank Solcast for the uncomplicated and free access to their solar forecast APIs. This research was supported by the German Academic Exchange Service (DAAD) as ide3a and the German Ministry for Education and Research (BMBF) as BIFOLD (grant 01IS18025A) and Software Campus (01IS17050).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Philipp Wiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Wiesner, P., Scheinert, D., Wittkopp, T., Thamsen, L., Kao, O. (2022). Cucumber: Renewable-Aware Admission Control for Delay-Tolerant Cloud and Edge Workloads. In: Cano, J., Trinder, P. (eds) Euro-Par 2022: Parallel Processing. Euro-Par 2022. Lecture Notes in Computer Science, vol 13440. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12596-6

  • Online ISBN: 978-3-031-12597-3

  • eBook Packages: Computer ScienceComputer Science (R0)