Skip to main content

Dried Blood Spots in Therapeutic Drug Monitoring and Toxicology

  • Chapter
  • First Online:
Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology

Abstract

In the quest for suitable surrogates to venipuncture and conventional biological matrices (plasma and serum), dried blood spot (DBS) sampling has emerged as a very credible candidate with good analytical prospects. The use of DBS for qualitative and quantitative purposes has garnered much attention from the scientific community over the past 60 years. This chapter details the applicability of DBS in therapeutic drug monitoring (TDM) and toxicology. Specifically, this chapter highlights topical issues including but not limited to the application of DBS sampling in pharmacokinetics (PK), toxicokinetics (TK), forensic toxicology, and biomonitoring of environmental contaminants. The strengths and weaknesses associated with its use, the various presumptions that need to be considered in the use of same for TDM, and other pertinent issues are herein addressed. Due consideration has also been devoted to discussing the implications of blood hematocrit variations (known as the hematocrit factor) and ways to tackle or cope with this pitfall. Finally, this chapter delineates the procedural steps in DBS sampling, recent innovations in DBS sampling, and high-throughput application of same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    Article  CAS  PubMed  Google Scholar 

  2. Seashore MR, Seashore CJ. Newborn screening and the pediatric practitioner. Semin Perinatol. 2005;29(3):182–8.

    Article  PubMed  Google Scholar 

  3. Garg U, Dasouki M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem. 2006;39(4):315–32.

    Article  CAS  PubMed  Google Scholar 

  4. Chace DH. Mass spectrometry in newborn and metabolic screening: historical perspective and future directions. J Mass Spectrom. 2009;44(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  5. Stove CP, et al. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol. 2012;42(3):230–43.

    Article  CAS  PubMed  Google Scholar 

  6. Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robijns K, Koster RA, Touw DJ. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53(11):1053.

    Article  PubMed  Google Scholar 

  8. De Kesel PM, et al. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5(16):2023–41.

    Article  PubMed  Google Scholar 

  9. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma A, et al. Dried blood spots: concepts, present status, and future perspectives in bioanalysis. Drug Test Anal. 2014;6(5):399–414.

    CAS  PubMed  Google Scholar 

  11. Rowland M, Emmons GT. Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J. 2010;12(3):290–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hinderling PH. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev. 1997;49(3):279–95.

    CAS  PubMed  Google Scholar 

  13. Li Y, et al. The use of a membrane filtration device to form dried plasma spots for the quantitative determination of guanfacine in whole blood. Rapid Commun Mass Spectrom. 2012;26(10):1208–12.

    Article  CAS  PubMed  Google Scholar 

  14. Searles Nielsen S, et al. Newborn screening archives as a specimen source for epidemiologic studies: feasibility and potential for bias. Ann Epidemiol. 2008;18(1):58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  15. D'Avolio A, et al. HPLC-MS method for the quantification of nine anti-HIV drugs from dry plasma spot on glass filter and their long term stability in different conditions. J Pharm Biomed Anal. 2010;52(5):774–80.

    Article  CAS  PubMed  Google Scholar 

  16. Ramisetti NR, Arnipalli MS, Nimmu NV. Dried blood spot analysis of (+) and (−) darunavir enantiomers on immobilized amylose tris-(3, 5-dimethylphenylcarbamate) LC and its application to pharmacokinetics. Biomed Chromatogr. 2015;29(12):1878–84.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng JH, et al. Quantitation of tenofovir and emtricitabine in dried blood spots (DBS) with LC-MS/MS. J Pharm Biomed Anal. 2014;88:144–51.

    Article  CAS  PubMed  Google Scholar 

  18. Hooff GP, et al. Dried blood spot UHPLC-MS/MS analysis of oseltamivir and oseltamivircarboxylate--a validated assay for the clinic. Anal Bioanal Chem. 2011;400(10):3473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mei JV, et al. Radioimmunoassay for monitoring zidovudine in dried blood spot specimens. Clin Chem. 1998;44(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ter Heine R, et al. Quantification of the HIV-integrase inhibitor raltegravir and detection of its main metabolite in human plasma, dried blood spots and peripheral blood mononuclear cell lysate by means of high-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2009;49(2):451–8.

    Article  PubMed  Google Scholar 

  21. Kromdijk W, et al. Use of dried blood spots for the determination of plasma concentrations of nevirapine and efavirenz. J Antimicrob Chemother. 2012;67(5):1211–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman JT, et al. Determination of efavirenz in human dried blood spots by reversed-phase high-performance liquid chromatography with UV detection. Ther Drug Monit. 2013;35(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  23. Shah NM, et al. A simple bioanalytical method for the quantification of antiepileptic drugs in dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;923-924:65–73.

    Article  CAS  PubMed  Google Scholar 

  24. Dodin YI, et al. Population pharmacokinetics modeling of Lamotrigine in Jordanian epileptic patients using dried blood spot sampling. Drug Res (Stuttg). 2021;71(8):429–37.

    Article  CAS  Google Scholar 

  25. Linder C, et al. Comparison between dried blood spot and plasma sampling for therapeutic drug monitoring of antiepileptic drugs in children with epilepsy: a step towards home sampling. Clin Biochem. 2017;50(7–8):418–24.

    Article  CAS  PubMed  Google Scholar 

  26. Kolocouri F, Dotsikas Y, Loukas YL. Dried plasma spots as an alternative sample collection technique for the quantitative LC-MS/MS determination of gabapentin. Anal Bioanal Chem. 2010;398(3):1339–47.

    Article  CAS  PubMed  Google Scholar 

  27. la Marca G, et al. Rapid assay of rufinamide in dried blood spots by a new liquid chromatography-tandem mass spectrometric method. J Pharm Biomed Anal. 2011;54(1):192–7.

    Article  PubMed  Google Scholar 

  28. la Marca G, et al. Rapid assay of topiramate in dried blood spots by a new liquid chromatography-tandem mass spectrometric method. J Pharm Biomed Anal. 2008;48(5):1392–6.

    Article  PubMed  Google Scholar 

  29. Déglon J, et al. Use of the dried blood spot sampling process coupled with fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry: application to fluoxetine, norfluoxetine, reboxetine, and paroxetine analysis. Anal Bioanal Chem. 2010;396(7):2523–32.

    Article  PubMed  Google Scholar 

  30. Saracino MA, et al. Rapid assays of clozapine and its metabolites in dried blood spots by liquid chromatography and microextraction by packed sorbent procedure. J Chromatogr A. 2011;1218(16):2153–9.

    Article  CAS  PubMed  Google Scholar 

  31. Geers LM, et al. Dried blood spot analysis for therapeutic drug monitoring of Clozapine. J Clin Psychiatry. 2017;78(9):e1211–8.

    Article  PubMed  Google Scholar 

  32. Alfazil AA, Anderson RA. Stability of benzodiazepines and cocaine in blood spots stored on filter paper. J Anal Toxicol. 2008;32(7):511–5.

    Article  CAS  PubMed  Google Scholar 

  33. Meier-Davis SR, et al. Dried blood spot analysis of donepezil in support of a GLP 3-month dose-range finding study in rats. Int J Toxicol. 2012;31(4):337–47.

    Article  CAS  PubMed  Google Scholar 

  34. Lad R. Validation of individual quantitative methods for determination of cytochrome P450 probe substrates in human dried blood spots with HPLC-MS/MS. Bioanalysis. 2010;2(11):1849–61.

    Article  CAS  PubMed  Google Scholar 

  35. Baldo MN, et al. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) and dried blood spot sampling applied to pharmacokinetics studies in animals: correlation of classic and block design. Lab Anim. 2018;52(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  36. Damen CW, et al. Application of dried blood spots combined with high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry for simultaneous quantification of vincristine and actinomycin-D. Anal Bioanal Chem. 2009;394(4):1171–82.

    Article  CAS  PubMed  Google Scholar 

  37. Nageswara Rao R, et al. Determination of gemifloxacin on dried blood spots by hydrophilic interaction liquid chromatography with fluorescence detector: application to pharmacokinetics in rats. Biomed Chromatogr. 2012;26(12):1534–42.

    Article  CAS  PubMed  Google Scholar 

  38. la Marca G, et al. Rapid and sensitive LC-MS/MS method for the analysis of antibiotic linezolid on dried blood spot. J Pharm Biomed Anal. 2012;67-68:86–91.

    Article  PubMed  Google Scholar 

  39. Vu DH, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(15–16):1063–70.

    Article  CAS  PubMed  Google Scholar 

  40. Reddy TM, Tama CI, Hayes RN. A dried blood spots technique based LC-MS/MS method for the analysis of posaconazole in human whole blood samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(30):3626–38.

    Article  CAS  PubMed  Google Scholar 

  41. van der Elst KC, et al. Dried blood spot analysis suitable for therapeutic drug monitoring of voriconazole, fluconazole, and posaconazole. Antimicrob Agents Chemother. 2013;57(10):4999–5004.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Allanson AL, et al. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J Pharm Biomed Anal. 2007;44(4):963–9.

    Article  CAS  PubMed  Google Scholar 

  43. Martial LC, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents. 2018;52(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  44. Rao RN, et al. Rapid determination of rifaximin on dried blood spots by LC-ESI-MS. Biomed Chromatogr. 2011;25(11):1201–7.

    Article  PubMed  Google Scholar 

  45. Tawa R, Hirose S, Fujimoto T. Determination of the aminoglycoside antibiotics sisomicin and netilmicin in dried blood spots on filter discs, by high-performance liquid chromatography with pre-column derivatization and fluorimetric detection. J Chromatogr. 1989;490(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  46. Heinig K, et al. Determination of mycophenolic acid and its phenyl glucuronide in human plasma, ultrafiltrate, blood, DBS and dried plasma spots. Bioanalysis. 2010;2(8):1423–35.

    Article  CAS  PubMed  Google Scholar 

  47. la Marca G, et al. Development of an UPLC-MS/MS method for the determination of antibiotic ertapenem on dried blood spots. J Pharm Biomed Anal. 2012;61:108–13.

    Article  PubMed  Google Scholar 

  48. Suyagh MF, et al. Development and validation of a dried blood spot-HPLC assay for the determination of metronidazole in neonatal whole blood samples. Anal Bioanal Chem. 2010;397(2):687–93.

    Article  CAS  PubMed  Google Scholar 

  49. Cohen-Wolkowiez M, et al. Determining population and developmental pharmacokinetics of metronidazole using plasma and dried blood spot samples from premature infants. Pediatr Infect Dis J. 2013;32(9):956–61.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Le J, et al. Comparative analysis of ampicillin plasma and dried blood spot pharmacokinetics in neonates. Ther Drug Monit. 2018;40(1):103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Page-Sharp M, et al. Penicillin dried blood spot assay for use in patients receiving intramuscular Benzathine Penicillin G and other Penicillin preparations to prevent rheumatic fever. Antimicrob Agents Chemother. 2017;61(8):e00252-17

    Google Scholar 

  52. Beechinor RJ, et al. A dried blood spot analysis for Solithromycin in adolescents, children, and infants: a short communication. Ther Drug Monit. 2019;41(6):761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gonzalez D, et al. Solithromycin pharmacokinetics in plasma and dried blood spots and safety in adolescents. Antimicrob Agents Chemother. 2016;60(4):2572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Page-Sharp M, et al. Validation and application of a dried blood spot Ceftriaxone assay. Antimicrob Agents Chemother. 2016;60(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  55. Cohen-Wolkowiez M, et al. Developmental pharmacokinetics of piperacillin and tazobactam using plasma and dried blood spots from infants. Antimicrob Agents Chemother. 2014;58(5):2856–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barfield M, et al. Application of dried blood spots combined with HPLC-MS/MS for the quantification of acetaminophen in toxicokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;870(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  57. Saracino MA, et al. A novel test using dried blood spots for the chromatographic assay of methadone. Anal Bioanal Chem. 2012;404(2):503–11.

    Article  CAS  PubMed  Google Scholar 

  58. Youhnovski N, et al. Determination of naproxen using DBS: evaluation & pharmacokinetic comparison of human plasma versus human blood DBS. Bioanalysis. 2010;2(8):1501–13.

    Article  CAS  PubMed  Google Scholar 

  59. Ansari M, et al. A simplified method for busulfan monitoring using dried blood spot in combination with liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(12):1437–46.

    Article  CAS  PubMed  Google Scholar 

  60. Nageswara Rao R, et al. LC-ESI-MS/MS determination of paclitaxel on dried blood spots. Biomed Chromatogr. 2012;26(5):616–21.

    Article  CAS  PubMed  Google Scholar 

  61. Xie F, et al. A dried blood spot assay for paclitaxel and its metabolites. J Pharm Biomed Anal. 2018;148:307–15.

    Article  CAS  PubMed  Google Scholar 

  62. Agu L, et al. Simultaneous quantification of vincristine and its major M1 metabolite from dried blood spot samples of Kenyan pediatric cancer patients by UPLC-MS/MS. J Pharm Biomed Anal. 2021;203:114143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tripathy HK, et al. A dried blood spot assay with HPLC-MS/MS for the determination of larotrectinib in mouse blood and its application to a pharmacokinetic study. Biomed Chromatogr. 2020;34(12):e4953.

    Article  CAS  PubMed  Google Scholar 

  64. Dillenburg Weiss TL, et al. Evaluation of dried blood spots as an alternative matrix for therapeutic drug monitoring of abiraterone and delta(4)-abiraterone in prostate cancer patients. J Pharm Biomed Anal. 2021;195:113861.

    Article  CAS  PubMed  Google Scholar 

  65. Lee J, et al. Development of a dried blood spot sampling method towards therapeutic monitoring of radotinib in the treatment of chronic myeloid leukaemia. J Clin Pharm Ther. 2020;45(5):1006–13.

    Article  CAS  PubMed  Google Scholar 

  66. Koster RA, et al. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta. 2013;115:47–54.

    Article  CAS  PubMed  Google Scholar 

  67. Veenhof H, et al. Clinical application of a dried blood spot assay for sirolimus and everolimus in transplant patients. Clin Chem Lab Med. 2019;57(12):1854–62.

    Article  Google Scholar 

  68. Li F, et al. LC-MS/MS sensitivity enhancement using 2D-SCX/RPLC and its application in the assessment of pharmacokinetics of clonidine in dried blood spots. Bioanalysis. 2011;3(14):1577–86.

    Article  CAS  PubMed  Google Scholar 

  69. Lawson G, Cocks E, Tanna S. Quantitative determination of atenolol in dried blood spot samples by LC-HRMS: a potential method for assessing medication adherence. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;897:72–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lawson G, Cocks E, Tanna S. Bisoprolol, ramipril and simvastatin determination in dried blood spot samples using LC-HRMS for assessing medication adherence. J Pharm Biomed Anal. 2013;81-82:99–107.

    Article  CAS  PubMed  Google Scholar 

  71. Ganz N, et al. Development and validation of a fully automated online human dried blood spot analysis of bosentan and its metabolites using the Sample Card And Prep DBS System. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;885-886:50–60.

    Article  CAS  PubMed  Google Scholar 

  72. Rao RN, et al. Liquid chromatography-mass spectrometric determination of losartan and its active metabolite on dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;902:47–54.

    Article  CAS  PubMed  Google Scholar 

  73. Liang X, Jiang H, Chen X. Human DBS sampling with LC-MS/MS for enantioselective determination of metoprolol and its metabolite O-desmethyl metoprolol. Bioanalysis. 2010;2(8):1437–48.

    Article  CAS  PubMed  Google Scholar 

  74. Della Bona ML, et al. A rapid liquid chromatography tandem mass spectrometry-based method for measuring propranolol on dried blood spots. J Pharm Biomed Anal. 2013;78-79:34–8.

    Article  CAS  PubMed  Google Scholar 

  75. Li Y, et al. Dried blood spots as a sampling technique for the quantitative determination of guanfacine in clinical studies. Bioanalysis. 2011;3(22):2501–14.

    Article  CAS  PubMed  Google Scholar 

  76. Römsing S, Lindegardh N, Bergqvist Y. Determination of tafenoquine in dried blood spots and plasma using LC and fluorescence detection. Bioanalysis. 2011;3(16):1847–53.

    Article  PubMed  Google Scholar 

  77. Lindkvist J, Malm M, Bergqvist Y. Straightforward and rapid determination of sulfadoxine and sulfamethoxazole in capillary blood on sampling paper with liquid chromatography and UV detection. Trans R Soc Trop Med Hyg. 2009;103(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  78. Green MD, Mount DL, Nettey H. High-performance liquid chromatographic assay for the simultaneous determination of sulfadoxine and pyrimethamine from whole blood dried onto filter paper. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767(1):159–62.

    Article  CAS  PubMed  Google Scholar 

  79. Jansson A, Gustafsson LL, Mirghani RA. High-performance liquid chromatographic method for the determination of quinine and 3-hydroxyquinine in blood samples dried on filter paper. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;795(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  80. Lejeune D, et al. Simultaneous determination of monodesethylchloroquine, chloroquine, cycloguanil and proguanil on dried blood spots by reverse-phase liquid chromatography. J Pharm Biomed Anal. 2007;43(3):1106–15.

    Article  CAS  PubMed  Google Scholar 

  81. Kurawattimath V, et al. A modified serial blood sampling technique and utility of dried-blood spot technique in estimation of blood concentration: application in mouse pharmacokinetics. Eur J Drug Metab Pharmacokinet. 2012;37(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  82. Cheomung A, Na-Bangchang K. HPLC with ultraviolet detection for the determination of chloroquine and desethylchloroquine in whole blood and finger-prick capillary blood dried on filter paper. J Pharm Biomed Anal. 2011;55(5):1031–40.

    Article  CAS  PubMed  Google Scholar 

  83. Aburuz S, Millership J, McElnay J. Dried blood spot liquid chromatography assay for therapeutic drug monitoring of metformin. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;832(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  84. Swales JG, et al. Simultaneous quantitation of metformin and sitagliptin from mouse and human dried blood spots using laser diode thermal desorption tandem mass spectrometry. J Pharm Biomed Anal. 2011;55(3):544–51.

    Article  CAS  PubMed  Google Scholar 

  85. Turpin PE, et al. Application of the DBS methodology to a toxicokinetic study in rats and transferability of analysis between bioanalytical laboratories. Bioanalysis. 2010;2(8):1489–99.

    Article  CAS  PubMed  Google Scholar 

  86. Adatsi FK. Forensic toxicology. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Oxford: Academic Press; 2014. p. 647–52.

    Chapter  Google Scholar 

  87. Clavijo CF, et al. A low blood volume LC-MS/MS assay for the quantification of fentanyl and its major metabolites norfentanyl and despropionyl fentanyl in children. J Sep Sci. 2011;34(24):3568–77.

    Article  CAS  PubMed  Google Scholar 

  88. Seymour C, et al. Determination of fentanyl analog exposure using dried blood spots with LC-MS-MS. J Anal Toxicol. 2019;43(4):266–76.

    Article  CAS  PubMed  Google Scholar 

  89. Shaner RL, et al. Quantitation of fentanyl analogs in dried blood spots by flow-through desorption coupled to online solid phase extraction tandem mass spectrometry. Anal Methods. 2017;9:3876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kummer N, et al. Quantification of EtG in hair, EtG and EtS in urine and PEth species in capillary dried blood spots to assess the alcohol consumption in driver's licence regranting cases. Drug Alcohol Depend. 2016;165:191–7.

    Article  CAS  PubMed  Google Scholar 

  91. Luginbühl M, et al. Quantitative determination of phosphatidylethanol in dried blood spots for monitoring alcohol abstinence. Nat Protoc. 2021;16(1):283–308.

    Article  PubMed  Google Scholar 

  92. Nguyen VL, Fitzpatrick M. Should phosphatidylethanol be currently analysed using whole blood, dried blood spots or both? Clin Chem Lab Med. 2019;57(5):617–22.

    Article  Google Scholar 

  93. Beck O, et al. Measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spots and venous blood-importance of inhibition of post-sampling formation from ethanol. Anal Bioanal Chem. 2021;413(22):5601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Spector LG, et al. Prenatal tobacco exposure and cotinine in newborn dried blood spots. Pediatrics. 2014;133(6):e1632–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yang J, et al. Levels of cotinine in dried blood specimens from newborns as a biomarker of maternal smoking close to the time of delivery. Am J Epidemiol. 2013;178(11):1648–54.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ladror D, Pitt B, Funk W. Quantification of cotinine in dried blood spots as a biomarker of exposure to tobacco smoke. Biomarkers. 2018;23(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  97. Salamin O, et al. Is pain temporary and glory forever? Detection of tramadol using dried blood spot in cycling competitions. Drug Test Anal. 2020;12(11–12):1649–57.

    Article  CAS  PubMed  Google Scholar 

  98. Luginbühl M, et al. Automated high-throughput analysis of tramadol and O-desmethyltramadol in dried blood spots. Drug Test Anal. 2020;12(8):1126–34.

    Article  PubMed  Google Scholar 

  99. Mercolini L, et al. Dried blood spots: liquid chromatography-mass spectrometry analysis of Δ9-tetrahydrocannabinol and its main metabolites. J Chromatogr A. 2013;1271(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  100. Kyriakou C, et al. Identification and quantification of psychoactive drugs in whole blood using dried blood spot (DBS) by ultra-performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2016;128:53–60.

    Article  CAS  PubMed  Google Scholar 

  101. Gelmi TJ, Weinmann W, Pfäffli M. Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability. Forensic Sci Res. 2021;6(3):195–207.

    Google Scholar 

  102. Davari B, et al. A sensitive LC-MS/MS assay for the quantification of methadone and its metabolites in dried blood spots: comparison with plasma. Ther Drug Monit. 2020;42(1):118–28.

    Article  Google Scholar 

  103. Odoardi S, Anzillotti L, Strano-Rossi S. Simplifying sample pretreatment: application of dried blood spot (DBS) method to blood samples, including postmortem, for UHPLC-MS/MS analysis of drugs of abuse. Forensic Sci Int. 2014;243:61–7.

    Article  CAS  PubMed  Google Scholar 

  104. Thomas A, et al. On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J Sep Sci. 2010;33(6–7):873–9.

    Article  CAS  PubMed  Google Scholar 

  105. Saussereau E, et al. On-line liquid chromatography/tandem mass spectrometry simultaneous determination of opiates, cocainics and amphetamines in dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;885-886:1–7.

    Article  CAS  PubMed  Google Scholar 

  106. Protti M, et al. Determination of oxycodone and its major metabolites in haematic and urinary matrices: comparison of traditional and miniaturised sampling approaches. J Pharm Biomed Anal. 2018;152:204–14.

    Article  CAS  PubMed  Google Scholar 

  107. Sadones N, et al. Do capillary dried blood spot concentrations of gamma-hydroxybutyric acid mirror those in venous blood? A comparative study. Drug Test Anal. 2015;7(4):336–40.

    Article  CAS  PubMed  Google Scholar 

  108. Ingels AS, Lambert WE, Stove CP. Determination of gamma-hydroxybutyric acid in dried blood spots using a simple GC-MS method with direct "on spot" derivatization. Anal Bioanal Chem. 2010;398(5):2173–82.

    Article  CAS  PubMed  Google Scholar 

  109. Forni S, et al. Quantitation of gamma-hydroxybutyric acid in dried blood spots: feasibility assessment for newborn screening of succinic semialdehyde dehydrogenase (SSADH) deficiency. Mol Genet Metab. 2013;109(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  110. Moretti M, et al. Determination of benzodiazepines in blood and in dried blood spots collected from post-mortem samples and evaluation of the stability over a three-month period. Drug Test Anal. 2019;11(9):1403–11.

    Article  CAS  PubMed  Google Scholar 

  111. Déglon J, et al. Rapid LC-MS/MS quantification of the major benzodiazepines and their metabolites on dried blood spots using a simple and cost-effective sample pretreatment. Bioanalysis. 2012;4(11):1337–50.

    Article  PubMed  Google Scholar 

  112. Świądro M, et al. Development of a new method for drug detection based on a combination of the dried blood spot method and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1157:122339.

    Article  PubMed  Google Scholar 

  113. Ambach L, Stove C. Determination of cocaine and metabolites in dried blood spots by LC-MS/MS. Methods Mol Biol. 2019;1872:261–72.

    Article  CAS  PubMed  Google Scholar 

  114. Ambach L, et al. Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug Test Anal. 2014;6(4):367–75.

    Article  CAS  PubMed  Google Scholar 

  115. Teran RA, et al. Stimulant use and study protocol completion: assessing the ability of men who have sex with men to collect dried blood spots for laboratory measurement of HIV viral load. Arch Sex Behav. 2020;49(1):195–209.

    Article  PubMed  Google Scholar 

  116. Jing J, et al. Automated online dried blood spot sample preparation and detection of anabolic steroid esters for sports drug testing. Drug Test Anal. 2022;14(6):1040–1052.

    Google Scholar 

  117. Yuan Y, Xu Y, Lu J. Dried blood spots in doping analysis. Bioanalysis. 2021;13(7):587–604.

    Article  CAS  PubMed  Google Scholar 

  118. Chang WC, et al. Determination of anabolic steroids in dried blood using microsampling and gas chromatography-tandem mass spectrometry: application to a testosterone gel administration study. J Chromatogr A. 2020;1628:461445.

    Article  CAS  PubMed  Google Scholar 

  119. Salamin O, et al. Steroid profiling by UHPLC-MS/MS in dried blood spots collected from healthy women with and without testosterone gel administration. J Pharm Biomed Anal. 2021;204:114280.

    Article  CAS  PubMed  Google Scholar 

  120. Funk WE, et al. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomark Prev. 2008;17(8):1896–901.

    Article  CAS  Google Scholar 

  121. Kato K, et al. Analysis of blood spots for polyfluoroalkyl chemicals. Anal Chim Acta. 2009;656(1–2):51–5.

    Article  CAS  PubMed  Google Scholar 

  122. Otero-Santos SM, et al. Analysis of perchlorate in dried blood spots using ion chromatography and tandem mass spectrometry. Anal Chem. 2009;81(5):1931–6.

    Article  CAS  PubMed  Google Scholar 

  123. Twiner MJ, et al. Concurrent exposure of bottlenose dolphins (Tursiops truncatus) to multiple algal toxins in Sarasota Bay, Florida, USA. PLoS One. 2011;6(3):e17394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Woofter R, et al. Measurement of brevetoxin levels by radioimmunoassay of blood collection cards after acute, long-term, and low-dose exposure in mice. Environ Health Perspect. 2003;111(13):1595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fairey ER, et al. Biomonitoring brevetoxin exposure in mammals using blood collection cards. Environ Health Perspect. 2001;109(7):717–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Maucher JM, et al. Optimization of blood collection card method/enzyme-linked immunoassay for monitoring exposure of Bottlenose Dolphin to Brevetoxin-producing red tides. Environ Sci Technol. 2007;41(2):563–7.

    Article  CAS  PubMed  Google Scholar 

  127. Denniff P, Spooner N. The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis. 2010;2(8):1385–95.

    Article  CAS  PubMed  Google Scholar 

  128. Barfield M, Wheller R. Use of dried plasma spots in the determination of pharmacokinetics in clinical studies: validation of a quantitative bioanalytical method. Anal Chem. 2011;83(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  129. Hagan AS, Jones DR, Agarwal R. Use of dried plasma spots for the quantification of iothalamate in clinical studies. Clin J Am Soc Nephrol. 2013;8(6):909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Calcagno A, et al. Influence of CYP2B6 and ABCB1 SNPs on nevirapine plasma concentrations in Burundese HIV-positive patients using dried sample spot devices. Br J Clin Pharmacol. 2012;74(1):134–40.

    Article  CAS  PubMed  Google Scholar 

  131. Baietto L, et al. Development and validation of a new method to simultaneously quantify triazoles in plasma spotted on dry sample spot devices and analysed by HPLC-MS. J Antimicrob Chemother. 2012;67(11):2645–9.

    Article  CAS  PubMed  Google Scholar 

  132. Sadilkova K, et al. Clinical validation and implementation of a multiplexed immunosuppressant assay in dried blood spots by LC-MS/MS. Clin Chim Acta. 2013;421:152–6.

    Article  CAS  PubMed  Google Scholar 

  133. Ingels AS, et al. Dried blood spot punches for confirmation of suspected γ-hydroxybutyric acid intoxications: validation of an optimized GC-MS procedure. Bioanalysis. 2011;3(20):2271–81.

    Article  CAS  PubMed  Google Scholar 

  134. Skelton VA, et al. Evaluation of point-of-care haemoglobin measuring devices: a comparison of Radical-7™ pulse co-oximetry, HemoCue(®) and laboratory haemoglobin measurements in obstetric patients*. Anaesthesia. 2013;68(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  135. Nkrumah B, et al. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting. BMC Clin Pathol. 2011;11(1):5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Adam I, et al. Comparison of HemoCue® hemoglobin-meter and automated hematology analyzer in measurement of hemoglobin levels in pregnant women at Khartoum hospital, Sudan. Diagn Pathol. 2012;7(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. O'Mara M, et al. The effect of hematocrit and punch location on assay bias during quantitative bioanalysis of dried blood spot samples. Bioanalysis. 2011;3(20):2335–47.

    Article  CAS  PubMed  Google Scholar 

  138. De Kesel PM, et al. Current strategies for coping with the hematocrit problem in dried blood spot analysis. Bioanalysis. 2014;6(14):1871–4.

    Article  PubMed  Google Scholar 

  139. Capiau S, et al. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem. 2013;85(1):404–10.

    Article  CAS  PubMed  Google Scholar 

  140. Zanet DL, et al. Blood and dried blood spot telomere length measurement by qPCR: assay considerations. PLoS One. 2013;8(2):e57787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Demirev PA. Dried blood spots: analysis and applications. Anal Chem. 2013;85(2):779–89.

    Article  CAS  PubMed  Google Scholar 

  142. Sadagopan NP, et al. Investigation of EDTA anticoagulant in plasma to improve the throughput of liquid chromatography/tandem mass spectrometric assays. Rapid Commun Mass Spectrom. 2003;17(10):1065–70.

    Article  CAS  PubMed  Google Scholar 

  143. Li W, Zhang J, Tse FL. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25(1–2):258–77.

    Article  PubMed  Google Scholar 

  144. Li W, Tse FL. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed Chromatogr. 2010;24(1):49–65.

    Article  PubMed  Google Scholar 

  145. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327–36.

    Article  PubMed  Google Scholar 

  146. Jager NG, et al. Procedures and practices for the validation of bioanalytical methods using dried blood spots: a review. Bioanalysis. 2014;6(18):2481–514.

    Article  CAS  PubMed  Google Scholar 

  147. Timmerman P, et al. EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis. 2011;3(14):1567–75.

    Article  CAS  PubMed  Google Scholar 

  148. Damon DE, et al. Dried blood spheroids for dry-state room temperature stabilization of microliter blood samples. Anal Chem. 2018;90(15):9353–8.

    Article  CAS  PubMed  Google Scholar 

  149. Nuchtavorn N, Dvořák M, Kubáň P. Paper-based molecularly imprinted-interpenetrating polymer network for on-spot collection and microextraction of dried blood spots for capillary electrophoresis determination of carbamazepine. Anal Bioanal Chem. 2020;412(12):2721–30.

    Article  CAS  PubMed  Google Scholar 

  150. Lenk G, et al. A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper. Bioanalysis. 2015;7(16):2085–94.

    Article  CAS  PubMed  Google Scholar 

  151. Neto R, et al. Precise, accurate and user-independent blood collection system for dried blood spot sample preparation. Anal Bioanal Chem. 2018;410(14):3315–23.

    Article  CAS  PubMed  Google Scholar 

  152. Nakahara T, et al. Development of a hematocrit-insensitive device to collect accurate volumes of dried blood spots without specialized skills for measuring clozapine and its metabolites as model analytes. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1087-1088:70–9.

    Article  CAS  PubMed  Google Scholar 

  153. Tobin NH, et al. Comparison of dried blood spot and plasma sampling for untargeted metabolomics. Metabolomics. 2021;17(7):62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li K, et al. Improved dried blood spot-based metabolomics: a targeted, broad-spectrum, single-injection method. Meta. 2020;10(3):82.

    Google Scholar 

  155. Ward C, et al. Nontargeted mass spectrometry of dried blood spots for interrogation of the human circulating metabolome. J Mass Spectrom. 2021;56(8):e4772.

    Article  CAS  PubMed  Google Scholar 

  156. van Dooijeweert B, et al. Dried blood spot metabolomics reveals a metabolic fingerprint with diagnostic potential for Diamond Blackfan Anaemia. Br J Haematol. 2021;193(6):1185–93.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Al-Qahtani W, et al. Dried blood spot-based Metabolomic profiling in adults with cystic fibrosis. J Proteome Res. 2020;19(6):2346–57.

    Article  CAS  PubMed  Google Scholar 

  158. DiBattista A, et al. Metabolic signatures of cystic fibrosis identified in dried blood spots for newborn screening without carrier identification. J Proteome Res. 2019;18(3):841–54.

    CAS  PubMed  Google Scholar 

  159. Petrick LM, et al. Metabolomics of neonatal blood spots reveal distinct phenotypes of pediatric acute lymphoblastic leukemia and potential effects of early-life nutrition. Cancer Lett. 2019;452:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xiao Y, et al. Targeted metabolomics reveals birth screening biomarkers for biliary atresia in dried blood spots. J Proteome Res. 2021;21:721.

    Article  PubMed  Google Scholar 

  161. Petrick L, et al. Untargeted metabolomics of newborn dried blood spots reveals sex-specific associations with pediatric acute myeloid leukemia. Leuk Res. 2021;106:106585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jing Y, et al. Rapid differentiating colorectal cancer and colorectal polyp using dried blood spot mass spectrometry metabolomic approach. IUBMB Life. 2017;69(5):347–54.

    Article  CAS  PubMed  Google Scholar 

  163. Hu Z, et al. Rapid and sensitive differentiating ischemic and Hemorrhagic strokes by dried blood spot based direct injection mass spectrometry metabolomics analysis. J Clin Lab Anal. 2016;30(6):823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang Q, et al. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. Onco Targets Ther. 2016;9:1389–98.

    PubMed  PubMed Central  Google Scholar 

  165. Van Dooijeweert B, et al. Untargeted metabolic profiling in dried blood spots identifies disease fingerprint for pyruvate kinase deficiency. Haematologica. 2021;106(10):2720–5.

    Article  PubMed  Google Scholar 

  166. Barone R, et al. A subset of patients with autism spectrum disorders show a distinctive metabolic profile by dried blood spot analyses. Front Psych. 2018;9:636.

    Article  Google Scholar 

  167. Courraud J, et al. Studying autism using untargeted metabolomics in newborn screening samples. J Mol Neurosci. 2021;71(7):1378–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yu L, et al. Metabolomic profiling of dried blood spots reveals gender-specific discriminant models for the diagnosis of small cell lung cancer. Aging (Albany NY). 2020;12(1):978–95.

    Article  Google Scholar 

  169. Malsagova K, et al. Dried blood spot in laboratory: directions and prospects. Diagnostics (Basel). 2020;10(4):248.

    Google Scholar 

  170. Helfand RF, et al. Dried blood spots versus sera for detection of rubella virus-specific immunoglobulin M (IgM) and IgG in samples collected during a rubella outbreak in Peru. Clin Vaccine Immunol. 2007;14(11):1522–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fachiroh J, et al. Dried-blood sampling for epstein-barr virus immunoglobulin G (IgG) and IgA serology in nasopharyngeal carcinoma screening. J Clin Microbiol. 2008;46(4):1374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tuaillon E, et al. Dried blood spot for hepatitis C virus serology and molecular testing. Hepatology. 2010;51(3):752–8.

    CAS  PubMed  Google Scholar 

  173. Balmaseda A, et al. Evaluation of immunological markers in serum, filter-paper blood spots, and saliva for dengue diagnosis and epidemiological studies. J Clin Virol. 2008;43(3):287–91.

    Article  CAS  PubMed  Google Scholar 

  174. Kroll CA, et al. Retrospective determination of ceruloplasmin in newborn screening blood spots of patients with Wilson disease. Mol Genet Metab. 2006;89(1–2):134–8.

    Article  CAS  PubMed  Google Scholar 

  175. Jung S, et al. Quantification of ATP7B protein in dried blood spots by peptide immuno-SRM as a potential screen for Wilson's disease. J Proteome Res. 2017;16(2):862–71.

    Article  CAS  PubMed  Google Scholar 

  176. Johansson J, et al. C-peptide in dried blood spots. Scand J Clin Lab Invest. 2010;70(6):404–9.

    Article  CAS  PubMed  Google Scholar 

  177. Thompson JW, et al. Extraction and analysis of carnitine and acylcarnitines by electrospray ionization tandem mass spectrometry directly from dried blood and plasma spots using a novel autosampler. Rapid Commun Mass Spectrom. 2012;26(21):2548–54.

    Article  PubMed  Google Scholar 

  178. Han J, et al. Isotope-labeling derivatization with 3-nitrophenylhydrazine for LC/multiple-reaction monitoring-mass-spectrometry-based quantitation of carnitines in dried blood spots. Anal Chim Acta. 2018;1037:177–87.

    Article  CAS  PubMed  Google Scholar 

  179. Cooper JD, et al. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl Psychiatry. 2017;7(12):1290.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Richard VR, et al. An LC-MRM assay for the quantification of metanephrines from dried blood spots for the diagnosis of pheochromocytomas and paragangliomas. Anal Chim Acta. 2020;1128:140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Collins CJ, et al. Multiplexed proteomic analysis for diagnosis and screening of five primary immunodeficiency disorders from dried blood spots. Front Immunol. 2020;11:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hachani J, et al. MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: matching throughput to objectives. Proteomics Clin Appl. 2011;5(7–8):405–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael N. Alolga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alolga, R.N., Liu, Q., Lian-Wen, Q. (2022). Dried Blood Spots in Therapeutic Drug Monitoring and Toxicology. In: Amponsah, S.K., Pathak, Y.V. (eds) Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-12398-6_4

Download citation

Publish with us

Policies and ethics