Skip to main content

Therapeutic Drug Monitoring and Toxicology: Relevance of Measuring Metabolites

  • Chapter
  • First Online:
Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology

Abstract

Therapeutic drug monitoring (TDM) is a valuable tool that healthcare providers have employed to optimize therapeutic efficacy of drugs while also maintaining drug concentrations below toxic levels. Although TDM has predominantly focused on determining the level of the parent drug compound in order to guide the dosing regimen, it is important to consider that some drugs are inactive in their parental forms and only their metabolites have therapeutic applications. Moreover, some drug metabolites possess distinct toxicity profiles from the parental compounds which are important to consider when evaluating the toxicity of a drug as a whole. This chapter investigates the role of metabolites in the safety assessment of drugs that are subject to TDM, such as those with narrow therapeutic windows. Examples of TDM of metabolites and mechanisms involved in metabolite-induced drug toxicity are discussed, drawing from several examples of drugs that are used in the clinical setting. This chapter emphasizes the utility of TDM of metabolites, demonstrating how select drugs can be converted to reactive metabolites with toxicity potential, and these should be considered when evaluating the efficacy and toxicity of a drug. The impact of pharmacogenetics in drug metabolism and the potential impact on efficacy and safety of drugs subject to TDM are also discussed. Finally, a cost-benefit analysis is made to support the inclusion of metabolite determination in routine TDM practice toward optimization of drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While it is common to refer to this as phase one reaction, this is not an accurate description of the reactions that take place. Referring to this as phase I only suggests that they take place first and other reactions follow. However, it has been shown that the other kind of reaction in the liver, which is generally referred to as phase II, may actually take place before “phase I,” simultaneously with “phase I,” or may even be the only major reaction that the xenobiotic undergoes. Therefore, phase I reactions are more accurately and broadly referred to as oxidative metabolism because a vast majority of reactions that take place via this route are oxidative in nature, while phase II reactions are more accurately referred to as conjugative metabolism as the other chemical moieties are added (conjugated) to the parent compound or its oxidative metabolite to create a new form.

References

  1. Ghiculescu RA. Therapeutic drug monitoring: which drugs, why, when and how to do it. 2008 [cited 2021 Dec 19]. Available from: https://www.nps.org.au/australian-prescriber/articles/therapeutic-drug-monitoring-which-drugs-why-when-and-how-to-do-it.

  2. Advani M, Seetharaman R, Pawar S, Mali S, Lokhande J. Past, present and future perspectives of therapeutic drug monitoring in India. Int J Clin Pract [Internet]. 2021 [cited 2021 Dec 30];75(8):e14189. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.14189.

  3. Kang J-S, Lee M-H. Overview of therapeutic drug monitoring. Korean J Intern Med [Internet]. 2009 [cited 2021 Dec 28];24(1):1–10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687654/.

  4. Kidd JM, Asempa TE, Abdelraouf K. Chapter 13 – Therapeutic drug monitoring. In: Adejare A, editor. Remington. 23rd ed [Internet]. Academic Press; 2021 [cited 2021 Dec 19]. p. 243–62. Available from: https://www.sciencedirect.com/science/article/pii/B9780128200070000131.

  5. Petre M, Strah A. Therapeutic drug monitoring of anti-epileptic drugs. Farm Vestn. 2015;66:35–41.

    Google Scholar 

  6. Raj Panday D, Panday KR, Basnet M, Kafle S, Shah B, Rauniar G. therapeutic drug monitoring of carbamazepine. Int J Neurorehabilitation [Internet]. 2017 [cited 2021 Dec 30];04(01). Available from: https://www.omicsgroup.org/journals/therapeutic-drug-monitoring-of-carbamazepine-2376-0281-1000245.php?aid=85963.

  7. Saleem MA, Basharat R, Rana NA, Khattak SAK. Role of clinician in therapeutic drug monitoring practice. Clin Pract [Internet]. 2020 Jan 20 [cited 2021 Dec 30];17(1):1429–35. Available from: https://www.openaccessjournals.com/abstract/role-of-clinician-in-therapeutic-drug-monitoring-practice-13152.html.

  8. Gross AS. Best practice in therapeutic drug monitoring. Br J Clin Pharmacol [Internet]. 2001 [cited 2021 Dec 30];52(Suppl 1):5S–10S. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014621/.

  9. Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-site therapeutic drug monitoring. Trends Biotechnol [Internet]. 2020 [cited 2021 Dec 29];38(11):1262–77. Available from: https://www.cell.com/trends/biotechnology/abstract/S0167-7799(20)30061-5.

  10. Grandjean P. Paracelsus revisited: the dose concept in a complex world. Basic Clin Pharmacol Toxicol [Internet]. 2016 [cited 2021 Dec 29];119(2):126–32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942381/.

  11. Widmark E. Die theoretischen Grundlagen und die praktische Verwendbarkeit der gerichtlich-medizinischen Alkoholbestimmung. J Am Med Assoc. 1932;98:1834.

    Article  Google Scholar 

  12. Sharma S, Joshi S, Chadda RK. Therapeutic drug monitoring of lithium in patients with bipolar affective disorder: experiences from a tertiary care hospital in India. Am J Ther. 2009;16(5):393–7.

    Article  PubMed  Google Scholar 

  13. Shorter E. The history of lithium therapy. Bipolar Disord. 2009;11(Suppl 2):4–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Finney DJ. The design and logic of a monitor of drug use. J Chronic Dis. 1965;18:77–98.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson E. Kinetics of drug absorption, distribution, metabolism, and excretion. J Pharm Sci [Internet]. 1961 [cited 2021 Dec 29];50(3):181–92. Available from: https://jpharmsci.org/article/S0022-3549(15)33106-3/abstract.

  16. Ensom MH, Davis GA, Cropp CD, Ensom RJ. Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes? Clin Pharmacokinet. 1998 Apr;34(4):265–79.

    Article  CAS  PubMed  Google Scholar 

  17. Horning MG, Brown L, Nowlin J, Lertratanangkoon K, Kellaway P, Zion TE. Use of saliva in therapeutic drug monitoring. Clin Chem. 1977;23(2 PT. 1):157–64.

    Google Scholar 

  18. Lagerström P, Persson B. Liquid chromatography in the monitoring of plasma levels of antiarrhythmic drugs. J Chromatogr A. 1978;149:331–40.

    Article  Google Scholar 

  19. Neu HC. A review and summary of the pharmacokinetics of cefoperazone: a new, extended-spectrum beta-lactam antibiotic. Ther Drug Monit. 1981;3(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ganguly NK, Bano R, Seth SD. Human genome project: pharmacogenomics and drug development. Indian J Exp Biol. 2001;39(10):955–61.

    CAS  PubMed  Google Scholar 

  21. Belknap R, Weis S, Brookens A, Au-Yeung KY, Moon G, DiCarlo L, et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLoS One. 2013;8(1):e53373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ranamukhaarachchi SA, Padeste C, Dübner M, Häfeli UO, Stoeber B, Cadarso VJ. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci Rep [Internet]. 2016 [cited 2021 Dec 29];6(1):29075. Available from: https://www.nature.com/articles/srep29075.

  23. Kling A, Chatelle C, Armbrecht L, Qelibari E, Kieninger J, Dincer C, et al. Multianalyte antibiotic detection on an electrochemical microfluidic platform. Anal Chem. 2016;88(20):10036–43.

    Article  CAS  PubMed  Google Scholar 

  24. WHO. Review of the evidence to include TDM in the Essential in vitro diagnostics list and prioritization of medicines to be monitored. 2019.

    Google Scholar 

  25. Rawson TM, Gowers SAN, Freeman DME, Wilson RC, Sharma S, Gilchrist M, et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. Lancet Digit Health. 2019;1(7):e335–43.

    Article  PubMed  Google Scholar 

  26. Jang SH, Yan Z, Lazor JA. Therapeutic drug monitoring: a patient management tool for precision medicine. Clin Pharmacol Ther. 2016;99(2):148–50.

    Article  CAS  PubMed  Google Scholar 

  27. Marshall WJ, Bangert SK. Clinical chemistry. Edinburgh. New York: Mosby; 2004.

    Google Scholar 

  28. Gex-Fabry M, Balant-Gorgia AE, Balant LP. Therapeutic drug monitoring databases for postmarketing surveillance of drug-drug interactions. Drug Saf. 2001;24(13):947–59.

    Article  CAS  PubMed  Google Scholar 

  29. Schoretsanitis G, Paulzen M, Unterecker S, Schwarz M, Conca A, Zernig G, et al. TDM in psychiatry and neurology: A comprehensive summary of the consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology, update 2017; a tool for clinicians. World J Biol Psychiatry [Internet]. 2018 [cited 2022 Jan 16];19(3):162–74. Available from: https://doi.org/10.1080/15622975.2018.1439595.

  30. Burns AN, Goldman JL. A moving target-vancomycin therapeutic monitoring. J Pediatr Infect Dis Soc. 2020 Sep 17;9(4):474–8.

    Article  CAS  Google Scholar 

  31. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm: AJHP. 2009;66(1):82–98.

    Article  CAS  PubMed  Google Scholar 

  32. Jenkins A, Thomson AH, Brown NM, Semple Y, Sluman C, MacGowan A, et al. Amikacin use and therapeutic drug monitoring in adults: do dose regimens and drug exposures affect either outcome or adverse events? A systematic review. J Antimicrob Chemother. 2016;71(10):2754–9.

    Article  CAS  PubMed  Google Scholar 

  33. Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojeńska A, Kübler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care Lond Engl. 2013;17(4):R165.

    Article  Google Scholar 

  34. Filler G. Abbreviated mycophenolic acid AUC from C0, C1, C2, and C4 is preferable in children after renal transplantation on mycophenolate mofetil and tacrolimus therapy. Transpl Int. 2004;17(3):120–5.

    CAS  PubMed  Google Scholar 

  35. Villeneuve D, Brothers A, Harvey E, Kemna M, Law Y, Nemeth T, et al. Valganciclovir dosing using area under the curve calculations in pediatric solid organ transplant recipients. Pediatr Transplant. 2013;17(1):80–5.

    Article  PubMed  Google Scholar 

  36. Katz R. Biomarkers and surrogate markers: An FDA perspective. NeuroRx [Internet]. 2004 [cited 2022 Feb 21];1(2):189–95. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC534924/.

  37. Monagle P, Chan A, Massicotte P, Chalmers E, Michelson AD. Antithrombotic therapy in children: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126(3 Suppl):645S–87S.

    Article  CAS  PubMed  Google Scholar 

  38. Costa-Lima C, Fiusa MML, Annichino-Bizzacchi JM, de Paula EV. Prothrombin complex concentrates in warfarin anticoagulation reversal. Rev Bras Hematol E Hemoter [Internet]. 2012 [cited 2022 Feb 21];34(4):302–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460405/.

  39. Shikdar S, Vashisht R, Bhattacharya PT. International Normalized Ratio (INR). In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022 [cited 2022 Feb 21]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK507707/.

  40. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, et al. Review of therapeutic drug monitoring of anticancer drugs part 1 – cytotoxics. Eur J Cancer [Internet]. 2014 [cited 2022 Feb 21];50(12):2010–9. Available from: https://www.sciencedirect.com/science/article/pii/S0959804914005991.

  41. Vikingsson S, Carlsson B, Almer SHC, Peterson C. Monitoring of thiopurine metabolites in patients with inflammatory bowel disease-what is actually measured? Ther Drug Monit. 2009;31(3):345–50.

    Article  CAS  PubMed  Google Scholar 

  42. Hacker M, Messer WS, Bachmann KA. Pharmacology: principles and practice. Academic Press; 2009. 607 p.

    Google Scholar 

  43. Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov [Internet]. 2018 [cited 2022 Jan 19];17(8):559–87. Available from: https://www.nature.com/articles/nrd.2018.46.

  44. Fortenberry M, Crowder J, So T-Y. The use of codeine and tramadol in the pediatric population-what is the verdict now? J Pediatr Health Care. 2019;33(1):117–23.

    Article  PubMed  Google Scholar 

  45. Berends SE, Strik AS, Löwenberg M, D’Haens GR, Mathôt RAA. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin Pharmacokinet [Internet]. 2019 [cited 2022 Feb 28];58(1):15–37. Available from: https://doi.org/10.1007/s40262-018-0676-z.

  46. McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin Pharmacol Ther. 2021;109(6):1528–37.

    Article  PubMed  Google Scholar 

  47. Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose for transplant pediatrics: A systematic review and meta-analysis. Pediatr Transplant. 2018;19:e13248.

    Article  Google Scholar 

  48. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  49. Morgan RA. Human tumor xenografts: the good, the bad, and the ugly. Mol Ther [Internet]. 2012 [cited 2022 Jan 19];20(5):882–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345993/.

  50. Golshayan D, Pascual M. Minimization of calcineurin inhibitors to improve long-term outcomes in kidney transplantation. Transpl Immunol. 2008;20(1–2):21–8.

    Article  CAS  PubMed  Google Scholar 

  51. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willuweit K, Frey A, Hörster A, Saner F, Herzer K. Real-world administration of once-daily MeltDose® prolonged-release tacrolimus (LCPT) allows for dose reduction of tacrolimus and stabilizes graft function following liver transplantation. J Clin Med [Internet]. 2020 [cited 2022 Feb 28];10(1):124. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795274/.

  53. Giardina EG. Procainamide: clinical pharmacology and efficacy against ventricular arrhythmias. Ann N Y Acad Sci. 1984;432:177–88.

    Article  CAS  PubMed  Google Scholar 

  54. Harron DW, Brogden RN. Acecainide (N-acetylprocainamide). A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cardiac arrhythmias. Drugs. 1990;39(5):720–40.

    Article  CAS  PubMed  Google Scholar 

  55. Kluger J, Drayer D, Reidenberg M, Ellis G, Lloyd V, Tyberg T, et al. The clinical pharmacology and antiarrhythmic efficacy of acetylprocainamide in patients with arrhythmias. Am J Cardiol. 1980;45(6):1250–7.

    Article  CAS  PubMed  Google Scholar 

  56. Winkle RA, Jaillon P, Kates RE, Peters F. Clinical pharmacology and antiarrhythmic efficacy of N-acetylprocainamide. Am J Cardiol. 1981;47(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  57. Prasaja B, Sasongko L, Harahap Y, Hardiyanti, Lusthom W, Grigg M. Simultaneous quantification of losartan and active metabolite in human plasma by liquid chromatography–tandem mass spectrometry using irbesartan as internal standard. J Pharm Biomed Anal [Internet]. 2009 [cited 2022 Jan 9];49(3):862–7. Available from: https://www.sciencedirect.com/science/article/pii/S0731708509000326.

  58. Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet. 2005;44(8):797–814.

    Article  CAS  PubMed  Google Scholar 

  59. Pinder RM, Brogden RN, Sawyer PR, Speight TM, Avery GS. Fenfluramine: a review of its pharmacological properties and therapeutic efficacy in obesity. Drugs. 1975;10(4):241–323.

    Article  CAS  PubMed  Google Scholar 

  60. Rothman RB, Baumann MH. Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf [Internet]. 2009 [cited 2022 Jan 9];8(3):317–29. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695569/.

  61. Potter JM, Donnelly A. Carbamazepine-10,11-epoxide in therapeutic drug monitoring. Ther Drug Monit. 1998;20(6):652–7.

    Article  CAS  PubMed  Google Scholar 

  62. Yacobi A, Zlotnick S, Colaizzi JL, Moros D, Masson E, Abolfathi Z, et al. A multiple-dose safety and bioequivalence study of a narrow therapeutic index drug: a case for carbamazepine. Clin Pharmacol Ther. 1999;65(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  63. Russell JL, Spiller HA, Baker DD. Markedly elevated carbamazepine-10,11-epoxide/carbamazepine ratio in a fatal carbamazepine ingestion. Case Rep Med [Internet]. 2015 [cited 2022 Jan 23];2015:369707. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621337/.

  64. Fan Y, Lin N, Luo L, Fang L, Huang Z, Yu H, et al. Pharmacodynamic and pharmacokinetic study of pegylated liposomal doxorubicin combination (CCOP) chemotherapy in patients with peripheral T-cell lymphomas. Acta Pharmacol Sin. 2011;32(3):408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Licata S, Saponiero A, Mordente A, Minotti G. Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol. 2000;13(5):414–20.

    Article  CAS  PubMed  Google Scholar 

  66. Rebollo J, Valenzuela B, Duart-Duart M, Escudero-Ortiz V, Gonzalez MS, Brugarolas A. Use of therapeutic drug monitoring of cancer chemotherapy to modify initial per-protocol doses. J Clin Oncol. 2010;28(15_suppl):e13015.

    Google Scholar 

  67. Zeng X, Cai H, Yang J, Qiu H, Cheng Y, Liu M. Pharmacokinetics and cardiotoxicity of doxorubicin and its secondary alcohol metabolite in rats. Biomed Pharmacother. 2019;116:108964.

    Article  CAS  PubMed  Google Scholar 

  68. Harahap Y, Ardiningsih P, Corintias Winarti A, Purwanto DJ. Analysis of the doxorubicin and doxorubicinol in the plasma of breast cancer patients for monitoring the toxicity of doxorubicin. Drug Des Devel Ther. 2020;14:3469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  70. Masubuchi Y. Metabolic and non-metabolic factors determining troglitazone hepatotoxicity: a review. Drug Metab Pharmacokinet. 2006;21(5):347–56.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson CD, Barthen MT, Hopper DW, Miller TA, Quigg M, Hudspeth C, et al. Quantification in patient urine samples of felbamate and three metabolites: acid carbamate and two mercapturic acids. Epilepsia. 1999 Jun;40(6):769–76.

    Article  CAS  PubMed  Google Scholar 

  72. Grillo MP, Knutson CG, Sanders PE, Waldon DJ, Hua F, Ware JA. Studies on the chemical reactivity of diclofenac acyl glucuronide with glutathione: identification of diclofenac-S-acyl-glutathione in rat bile. Drug Metab Dispos Biol Fate Chem. 2003;31(11):1327–36.

    Article  CAS  PubMed  Google Scholar 

  73. Siraki AG, Deterding LJ, Bonini MG, Jiang J, Ehrenshaft M, Tomer KB, et al. Procainamide, but not N-acetylprocainamide, induces protein free radical formation on myeloperoxidase: a potential mechanism of agranulocytosis. Chem Res Toxicol [Internet]. 2008 [cited 2022 Jan 3];21(5):1143–53. Available from: https://doi.org/10.1021/tx700415b.

  74. Robison TW, Jacobs A. Metabolites in safety testing. Bioanalysis. 2009;1(7):1193–200.

    Article  CAS  PubMed  Google Scholar 

  75. FDA. Safety testing of drug metabolites [Internet]. U.S. Food and Drug Administration. FDA; 2020 [cited 2022 Jan 9]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/safety-testing-drug-metabolites.

  76. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, et al. Drug metabolites in safety testing. Toxicol Appl Pharmacol [Internet]. 2002 [cited 2022 Jan 9];182(3):188–96. Available from: https://www.sciencedirect.com/science/article/pii/S0041008X02994408.

  77. Garg U, Frazee C. Chapter 7 – Therapeutic drug monitoring in infants and children. In: Clarke W, Dasgupta A, editors. Clinical challenges in therapeutic drug monitoring [Internet]. San Diego: Elsevier; 2016 [cited 2022 Mar 5]. p. 165–84. Available from: https://www.sciencedirect.com/science/article/pii/B9780128020258000076.

  78. Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP. Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol. 2008;4(4):425–38.

    Article  CAS  PubMed  Google Scholar 

  79. Fung M, Thornton A, Mybeck K, Wu JH, Hornbuckle K, Muniz E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf J [Internet]. 2001 [cited 2022 Jan 22];35(1):293–317. Available from: https://doi.org/10.1177/009286150103500134.

  80. Chang JB, Quinnies KM, Realubit R, Karan C, Rand JH, Tatonetti NP. A novel, rapid method to compare the therapeutic windows of oral anticoagulants using the Hill coefficient. Sci Rep [Internet]. 2016 [cited 2022 Jan 23];6(1):29387. Available from: https://www.nature.com/articles/srep29387.

  81. Gosselin RC, Dager WE, King JH, Janatpour K, Mahackian K, Larkin EC, et al. Effect of direct thrombin inhibitors, bivalirudin, lepirudin, and argatroban, on prothrombin time and INR values. Am J Clin Pathol. 2004;121(4):593–9.

    Article  CAS  PubMed  Google Scholar 

  82. Raebel P, Nikki M. Carroll MS, Susan E. Andrade S, Elizabeth A. Chester P, Jennifer Elston Lafata P, Adrianne Feldstein MD, et al. Monitoring of drugs with a narrow therapeutic range in ambulatory care. 2006 [cited 2022 Jan 23]; Available from: https://www.ajmc.com/view/may06-2302p268-274.

  83. Said R, Tsimberidou AM. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin Drug Metab Toxicol [Internet]. 2014 [cited 2022 Jan 23];10(3):483–94. Available from: https://doi.org/10.1517/17425255.2014.885016.

  84. Stamp LK, Barclay M. Therapeutic drug monitoring in rheumatic diseases: utile or futile? Rheumatology [Internet]. 2014 [cited 2022 Jan 23];53(6):988–97. Available from: https://doi.org/10.1093/rheumatology/ket355.

  85. Venkataramanan R, Shaw LM. Therapeutic monitoring of mycophenolic acid in liver transplant patients. Liver Transpl [Internet]. 2004 [cited 2022 Jan 23];10(4):503–5. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/lt.20125.

  86. Wartofsky L. Levothyroxine: therapeutic use and regulatory issues related to bioequivalence. Expert Opin Pharmacother. 2002;3(6):727–32.

    Article  CAS  PubMed  Google Scholar 

  87. Akingbasote JA. Utility of the HRN™ (hepatic cyp reductase null) mice for investigating mechanisms of liver toxicity of carboxylic-acid-containing drugs [Internet] [m_rs]. University of Birmingham; 2012 [cited 2017 Oct 20]. Available from: http://etheses.bham.ac.uk/3717/.

  88. Quadri SS, Stratford RE, Boué SM, Cole RB. Identification of glyceollin metabolites derived from conjugation with glutathione and glucuronic acid in male ZDSD rats by online liquid chromatography-electrospray ionization tandem mass spectrometry. J Agric Food Chem. 2014;62(12):2692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Macherey A-C, Dansette PM. Chapter 25 – Biotransformations leading to toxic metabolites: chemical aspects. In: Wermuth CG, Aldous D, Raboisson P, Rognan D, editors. The practice of medicinal chemistry. 4th ed [Internet]. San Diego: Academic Press; 2015 [cited 2022 Jan 23]. p. 585–614. Available from: https://www.sciencedirect.com/science/article/pii/B9780124172050000250.

  90. Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics [Internet]. 2013 [cited 2022 Jan 23];23(4):236–41. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696515/.

  91. Shipkova M, Strassburg CP, Braun F, Streit F, Gröne H-J, Armstrong VW, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol [Internet]. 2001 [cited 2022 Jan 23];132(5):1027–34. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1038/sj.bjp.0703898.

  92. Claesen M, Moustafa MA, Adline J, Vandervorst D, Poupaert JH. Evidence for an arene oxide-NIH shift pathway in the metabolic conversion of phenytoin to 5-(4-hydroxyphenyl)-5-phenylhydantoin in the rat and in man. Drug Metab Dispos Biol Fate Chem. 1982;10(6):667–71.

    CAS  PubMed  Google Scholar 

  93. Manson MM. Epoxides--is there a human health problem? Br J Ind Med. 1980;37(4):317–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Niederer C, Behra R, Harder A, Schwarzenbach RP, Escher BI. Mechanistic approaches for evaluating the toxicity of reactive organochlorines and epoxides in green algae. Environ Toxicol Chem [Internet]. 2004 [cited 2022 Jan 23];23(3):697–704. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1897/03-83.

  95. Simper GS, Hò G-GT, Celik AA, Huyton T, Kuhn J, Kunze-Schumacher H, et al. Carbamazepine-mediated adverse drug reactions: CBZ-10,11-epoxide but not carbamazepine induces the alteration of peptides presented by HLA-B∗15:02. J Immunol Res [Internet]. 2018 [cited 2022 Feb 6];2018:5086503. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158965/.

  96. Yoshimura R, Nakamura J, Eto S, Ueda N. Possible relationships between plasma carbamazepine-10,11-epoxide levels and antimanic efficacy and side effects in patients with schizoaffective disorde. Hum Psychopharmacol. 2000;15(4):237–40.

    Article  CAS  PubMed  Google Scholar 

  97. Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet. 1996;31(3):198–214.

    Article  CAS  PubMed  Google Scholar 

  98. Guttman Y, Nudel A, Kerem Z. Polymorphism in cytochrome P450 3A4 is ethnicity related. Front Genet [Internet]. 2019 [cited 2022 Jan 23];10:224. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433705/.

  99. Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, et al. Pharmacogenetics of carbamazepine and valproate: focus on polymorphisms of drug metabolizing enzymes and transporters. Pharm Basel Switz. 2021;14(3):204.

    CAS  Google Scholar 

  100. Burianová I, Bořecká K. Routine therapeutic monitoring of the active metabolite of carbamazepine: is it really necessary? Clin Biochem. 2015;48(13–14):866–9.

    Article  PubMed  Google Scholar 

  101. Zevin S. Chapter 42 – Pharmacologic interactions in the CICU. In: Jeremias A, Brown DL, editors. Cardiac intensive care. 2nd ed [Internet]. Philadelphia: W.B. Saunders; 2010 [cited 2022 Mar 20]. p. 516–31. Available from: https://www.sciencedirect.com/science/article/pii/B9781416037736100424

  102. Vivithanaporn P, Kongratanapasert T, Suriyapakorn B, Songkunlertchai P, Mongkonariyawong P, Limpikirati PK, et al. Potential drug-drug interactions of antiretrovirals and antimicrobials detected by three databases. Sci Rep [Internet]. 2021 [cited 2022 Mar 20];11(1):6089. Available from: https://www.nature.com/articles/s41598-021-85586-8.

  103. Ludden TM. Nonlinear pharmacokinetics: clinical Implications. Clin Pharmacokinet. 1991;20(6):429–46.

    Article  CAS  PubMed  Google Scholar 

  104. Ogilvie RI. Monitoring plasma theophylline concentrations. Ther Drug Monit [Internet]. 1980 [cited 2022 Mar 21];2(2):111–8. Available from: https://journals.lww.com/drug-monitoring/Abstract/1980/04000/Monitoring_Plasma_Theophylline_Concentrations.1.aspx.

  105. Wu MF, Lim WH. Phenytoin: a guide to therapeutic drug monitoring. Proc Singap Healthc [Internet]. 2013 [cited 2022 Mar 21];22(3):198–202. Available from: https://doi.org/10.1177/201010581302200307.

  106. McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30(9):2174–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatol Baltim MD. 2005;42(6):1364–72.

    Article  CAS  Google Scholar 

  108. Coles B, Wilson I, Wardman P, Hinson JA, Nelson SD, Ketterer B. The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinonimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys. 1988;264(1):253–60.

    Article  CAS  PubMed  Google Scholar 

  109. Koenderink JB, van den Heuvel JJMW, Bilos A, Vredenburg G, Vermeulen NPE, Russel FGM. Human multidrug resistance protein 4 (MRP4) is a cellular efflux transporter for paracetamol glutathione and cysteine conjugates. Arch Toxicol. 2020;94(9):3027–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davern TJ, James LP, Hinson JA, Polson J, Larson AM, Fontana RJ, et al. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology. 2006;130(3):687–94.

    Article  CAS  PubMed  Google Scholar 

  111. James LP, Letzig L, Simpson PM, Capparelli E, Roberts DW, Hinson JA, et al. Pharmacokinetics of Acetaminophen-Protein Adducts in Adults with Acetaminophen Overdose and Acute Liver Failure. Drug Metab Dispos [Internet]. 2009 [cited 2022 Mar 6];37(8):1779–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712440/.

  112. Cohen IV, Cirulli ET, Mitchell MW, Jonsson TJ, Yu J, Shah N, et al. Acetaminophen (paracetamol) use modifies the sulfation of sex hormones. eBioMedicine [Internet]. 2018 [cited 2022 Mar 12];28:316–23. Available from: https://www.thelancet.com/article/S2352-3964(18)30037-9/fulltext.

  113. Kane RE, Li AP, Kaminski DR. Sulfation and glucuronidation of acetaminophen by human hepatocytes cultured on Matrigel and type 1 collagen reproduces conjugation in vivo. Drug Metab Dispos Biol Fate Chem. 1995;23(3):303–7.

    CAS  PubMed  Google Scholar 

  114. Xiong Y, Uys JD, Tew KD, Townsend DM. S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal [Internet]. 2011 [cited 2022 Jan 21];15(1):233. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110090/.

  115. Schmidt JC, Dougherty BV, Beger RD, Jones DP, Schmidt MA, Mattes WB. Metabolomics as a truly translational tool for precision medicine. Int J Toxicol. 2021;40(5):413–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wilson ID. Drugs, bugs, and personalized medicine: pharmacometabonomics enters the ring. Proc Natl Acad Sci U S A. 2009;106(34):14187–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Niemann C, Gauthier J-C, Richert L, Ivanov M-A, Melcion C, Cordier A. Rat adult hepatocytes in primary pure and mixed monolayer culture: comparison of the maintenance of mixed function oxidase and conjugation pathways of drug metabolism. Biochem Pharmacol. 1991;42(2):373–9.

    Article  CAS  PubMed  Google Scholar 

  118. Sipes IG. Biotransformation of toxicants. Toxicology. 1991:88–126.

    Google Scholar 

  119. Choi-Sledeski YM, Wermuth CG. Chapter 28 – Designing prodrugs and bioprecursors. In: Wermuth CG, Aldous D, Raboisson P, Rognan D, editors. The practice of medicinal chemistry. 4th ed [Internet]. San Diego: Academic Press; 2015 [cited 2022 Jan 30]. p. 657–96. Available from: https://www.sciencedirect.com/science/article/pii/B9780124172050000286.

  120. Attia SM. Deleterious effects of reactive metabolites. Oxidative Med Cell Longev. 2010;3(4):238–53.

    Article  Google Scholar 

  121. Hughes TB, Dang NL, Miller GP, Swamidass SJ. Modeling reactivity to biological macromolecules with a deep multitask network. ACS Cent Sci. 2016;2(8):529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):4642.

    Google Scholar 

  123. Guengerich FP. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys. 2003;409(1):59–71.

    Article  PubMed  Google Scholar 

  124. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14(6):611–50.

    Article  CAS  PubMed  Google Scholar 

  125. Isin EM, Guengerich FP. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta BBA – Gen Subj. 2007;1770(3):314–29.

    Article  CAS  Google Scholar 

  126. King CD, Rios GR, Green MD, Tephly TR. UDP-glucuronosyltransferases. Curr Drug Metab [Internet]. 2000 [cited 2022 Feb 5];1(2):143–61. Available from: https://www.eurekaselect.com/article/10514.

  127. Timbrell JA. Principles of biochemical toxicology. 4th ed. Boca Raton: CRC Press; 2013. 464 p.

    Google Scholar 

  128. Damani LA, Houdi AA. Cytochrome P-450 and FAD-monooxygenase mediated S- and N-oxygenations. Drug Metabol Drug Interact [Internet]. 1988 Dec 1 [cited 2022 Feb 5];6(3–4):235–44. Available from: https://www.degruyter.com/document/doi/10.1515/DMDI.1988.6.3-4.235/html.

  129. Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase in drug metabolism: beyond a role as a detoxifying enzyme. Curr Med Chem. 2016;23(35):4027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Puente RA, Watkins L, Correa J. Specificity of alcohol dehydrogenases among various substrates. FASEB J [Internet]. 2013 [cited 2022 Feb 5];27(S1):lb221. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.27.1_supplement.lb221.

  131. Everse J. Heme proteins. In: Lennarz WJ, Lane MD, editors. Encyclopedia of biological chemistry [Internet]. New York: Elsevier; 2004 [cited 2022 Feb 5]. p. 354–61. Available from: https://www.sciencedirect.com/science/article/pii/B0124437109003045.

  132. Pohl LR, Nelson SD, Krishna G. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite. Biochem Pharmacol. 1978;27(4):491–6.

    Article  CAS  PubMed  Google Scholar 

  133. Fontana E, Dansette PM, Poli SM. Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr Drug Metab. 2005;6(5):413–54.

    Article  CAS  PubMed  Google Scholar 

  134. Halpert JR, Miller NE, Gorsky LD. On the mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 by chloramphenicol. J Biol Chem [Internet]. 1985 [cited 2022 Feb 6];260(14):8397–403. Available from: https://www.sciencedirect.com/science/article/pii/S0021925817394875.

  135. Benasutti M, Ejadi S, Whitlow MD, Loechler EL. Mapping the binding site of aflatoxin B1 in DNA: systematic analysis of the reactivity of aflatoxin B1 with guanines in different DNA sequences. Biochemistry [Internet]. 1988 [cited 2022 Feb 6];27(1):472–81. Available from: https://doi.org/10.1021/bi00401a068.

  136. Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention. Oncol Lett [Internet]. 2013 [cited 2022 Feb 6];5(4):1087–92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629261/.

  137. Tomson T, Bertilsson L. Potent therapeutic effect of carbamazepine-10,11-epoxide in trigeminal neuralgia. Arch Neurol. 1984;41(6):598–601.

    Article  CAS  PubMed  Google Scholar 

  138. Rietjens IM, den Besten C, Hanzlik RP, van Bladeren PJ. Cytochrome P450-catalyzed oxidation of halobenzene derivatives. Chem Res Toxicol. 1997;10(6):629–35.

    Article  CAS  PubMed  Google Scholar 

  139. Aldred EM, Buck C, Vall K. Chapter 7 – Free radicals. In: Aldred EM, Buck C, Vall K, editors. Pharmacology [Internet]. Edinburgh: Churchill Livingstone; 2009 [cited 2022 Feb 6]. p. 41–52. Available from: https://www.sciencedirect.com/science/article/pii/B9780443068980000074.

  140. Dybing E, Søderlund E, Haug LT, Thorgeirsson SS. Metabolism and activation of 2-acetylaminofluorene in isolated rat hepatocytes. Cancer Res. 1979 Aug;39(8):3268–75.

    CAS  PubMed  Google Scholar 

  141. Wilson RH, DeEds F, Cox A. The carcinogenic activity of 2-acetaminofluorene. IV. Action of related compounds. undefined [Internet]. 1947 [cited 2022 Feb 15]; Available from: https://www.semanticscholar.org/paper/The-Carcinogenic-Activity-of-2-Acetaminofluorene.-Wilson-DeEds/3e78c8681dc19a1e7179f5b9b1fb17633af530fa.

  142. Dansette PM, Bertho G, Mansuy D. First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives. Biochem Biophys Res Commun [Internet]. 2005 [cited 2022 Feb 16];338(1):450–5. Available from: https://www.sciencedirect.com/science/article/pii/S0006291X05018036.

  143. Dansette PM, Thang DC, Mansuy HEAD. Evidence for thiophene-s-oxide as a primary reactive metabolite of thiophene in vivo: Formation of a dihydrothiophene sulfoxide mercapturic acid. Biochem Biophys Res Commun [Internet]. 1992 [cited 2022 Feb 16];186(3):1624–30. Available from: https://www.sciencedirect.com/science/article/pii/S0006291X05815943.

  144. Treiber A, Dansette PM, Mansuy D. Mechanism of the aromatic hydroxylation of thiophene by acid-catalyzed peracid oxidation. J Org Chem. 2002;67(21):7261–6.

    Article  CAS  PubMed  Google Scholar 

  145. Treiber A, Dansette PM, El Amri H, Girault J-P, Ginderow D, Mornon J-P, et al. Chemical and biological oxidation of thiophene: preparation and complete characterization of thiophene S-oxide dimers and evidence for thiophene S-oxide as an intermediate in thiophene metabolism in vivo and in vitro. J Am Chem Soc [Internet]. 1997 [cited 2022 Feb 16];119(7):1565–71. Available from: https://doi.org/10.1021/ja962466g.

  146. Garner AP, Paine MJI, Rodriguez-Crespo I, Chinje EC, De Montellano PO, Stratford IJ, et al. Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents. Cancer Res. 1999;59(8):1929–34.

    CAS  PubMed  Google Scholar 

  147. Gaudiano G, Koch TH. Redox chemistry of anthracycline antitumor drugs and use of captodative radicals as tools for its elucidation and control. Chem Res Toxicol [Internet]. 1991 [cited 2022 Feb 16];4(1):2–16. Available from: https://doi.org/10.1021/tx00019a001.

  148. Dickinson RG. Iso-glucuronides. Curr Drug Metab. 2011;12(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  149. Stachulski AV, Meng X. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat Prod Rep [Internet]. 2013 [cited 2022 Feb 16];30(6):806–48. Available from: https://pubs.rsc.org/en/content/articlelanding/2013/np/c3np70003h.

  150. IARC. General discussion of common mechanisms for aromatic amines [Internet]. Some aromatic amines, organic dyes, and related exposures. International Agency for Research on Cancer; 2010 [cited 2022 Feb 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK385423/.

  151. Ahmed S, Zhou Z, Zhou J, Chen S-Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics [Internet]. 2016 [cited 2022 Mar 12];14(5):298–313. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093856/.

  152. Iohom G, Fitzgerald D, Cunningham AJ. Principles of pharmacogenetics--implications for the anaesthetist. Br J Anaesth. 2004;93(3):440–50.

    Article  CAS  PubMed  Google Scholar 

  153. Gupta A. Chapter 8 – Etiopathogenesis of insulin resistance. In: Gupta A, editor. Understanding insulin and insulin resistance [Internet]. Elsevier; 2022 [cited 2022 Mar 13]. p. 231–73. Available from: https://www.sciencedirect.com/science/article/pii/B978012820234000010X.

  154. Wang Y, He W. Chapter 21 – Endogenous mitochondrial aldehyde dehydrogenase-2 as an antioxidant in liver. In: Patel VB, Rajendram R, Preedy VR, editors. The liver [Internet]. Boston: Academic Press; 2018 [cited 2022 Mar 12]. p. 247–59. Available from: https://www.sciencedirect.com/science/article/pii/B9780128039519000215.

  155. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One [Internet]. 2013 [cited 2022 Mar 12];8(12):e82562. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858335/.

  156. Zhou S-F, Liu J-P, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev [Internet]. 2009 [cited 2022 Feb 6];41(2):89–295. Available from: http://www.tandfonline.com/doi/full/10.1080/03602530902843483.

  157. Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res [Internet]. 2008 [cited 2022 Mar 13];659(1–2):147–57. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676583/.

  158. Johnson AD, Zhang Y, Papp AC, Pinsonneault JK, Lim J-E, Saffen D, et al. Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues. Pharmacogenet Genomics [Internet]. 2008 [cited 2022 Mar 13];18(9):781–91. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779843/.

  159. Schrider DR, Hahn MW. Gene copy-number polymorphism in nature. Proc R Soc B Biol Sci [Internet]. 2010 [cited 2022 Mar 13];277(1698):3213–21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981937/.

  160. Sugatani J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet. 2013;28(2):83–92.

    Article  CAS  PubMed  Google Scholar 

  161. Shenfield GM. Genetic polymorphisms, drug metabolism and drug concentrations. Clin Biochem Rev [Internet]. 2004 [cited 2022 Mar 13];25(4):203–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934960/.

  162. Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos Biol Fate Chem. 2000;28(11):1303–10.

    CAS  PubMed  Google Scholar 

  163. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392(6):1093–108.

    Article  CAS  PubMed  Google Scholar 

  164. Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.

    Article  CAS  PubMed  Google Scholar 

  165. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos Biol Fate Chem. 2006;34(5):880–6.

    Article  CAS  PubMed  Google Scholar 

  166. Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong X, et al. Interindividual variability in cytochrome P450–mediated drug metabolism. Drug Metab Dispos [Internet]. 2016 [cited 2022 Mar 13];44(3):343–51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767386/.

  167. Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010;20(8):1020–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Botton MR, Whirl-Carrillo M, Del Tredici AL, Sangkuhl K, Cavallari LH, Agúndez JAG, et al. PharmVar GeneFocus: CYP2C19. Clin Pharmacol Ther [Internet]. 2021 [cited 2022 Mar 13];109(2):352–66. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpt.1973.

  169. Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 2004;14(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  170. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet Lond Engl. 2002;360(9340):1155–62.

    Article  CAS  Google Scholar 

  171. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc B Biol Sci [Internet]. 2013 [cited 2022 Mar 13];368(1612):20120431. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538421/.

  172. Drahushuk AT, McGarrigle BP, Larsen KE, Stegeman JJ, Olson JR. Detection of CYP1A1 protein in human liver and induction by TCDD in precision-cut liver slices incubated in dynamic organ culture. Carcinogenesis. 1998;19(8):1361–8.

    Article  CAS  PubMed  Google Scholar 

  173. Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics. 1993;3(5):239–49.

    Article  CAS  PubMed  Google Scholar 

  174. Lang D, Radtke M, Bairlein M. Highly variable expression of CYP1A1 in human liver and impact on pharmacokinetics of riociguat and granisetron in humans. Chem Res Toxicol. 2019;32(6):1115–22.

    Article  CAS  PubMed  Google Scholar 

  175. Paine MF, Schmiedlin-Ren P, Watkins PB. Cytochrome P-450 1A1 expression in human small bowel: interindividual variation and inhibition by ketoconazole. Drug Metab Dispos Biol Fate Chem. 1999;27(3):360–4.

    CAS  PubMed  Google Scholar 

  176. Eugster HP, Probst M, Würgler FE, Sengstag C. Caffeine, estradiol, and progesterone interact with human CYP1A1 and CYP1A2. Evidence from cDNA-directed expression in Saccharomyces cerevisiae. Drug Metab Dispos Biol Fate Chem. 1993;21(1):43–9.

    CAS  PubMed  Google Scholar 

  177. Soyama A, Hanioka N, Saito Y, Murayama N, Ando M, Ozawa S, et al. Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol Toxicol. 2002;91(4):174–8.

    Article  CAS  PubMed  Google Scholar 

  178. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang Z, Fasco MJ, Huang Z, Guengerich FP, Kaminsky LS. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos Biol Fate Chem. 1995;23(12):1339–46.

    CAS  PubMed  Google Scholar 

  180. Dixon CM, Colthup PV, Serabjit-Singh CJ, Kerr BM, Boehlert CC, Park GR, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos Biol Fate Chem. 1995;23(11):1225–30.

    CAS  PubMed  Google Scholar 

  181. Fang J, McKay G, Song J, Remillrd A, Li X, Midha K. In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos Biol Fate Chem. 2001;29(12):1638–43.

    CAS  PubMed  Google Scholar 

  182. Wang RW, Liu L, Cheng H. Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine. Drug Metab Dispos Biol Fate Chem. 1996;24(7):786–91.

    CAS  PubMed  Google Scholar 

  183. Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos Biol Fate Chem. 1994;22(6):909–15.

    CAS  PubMed  Google Scholar 

  184. Zhou S-F, Yang L-P, Zhou Z-W, Liu Y-H, Chan E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J [Internet]. 2009 [cited 2022 Mar 13];11(3):481–94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758120/.

  185. Zhang H-F, Wang H-H, Gao N, Wei J-Y, Tian X, Zhao Y, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. J Pharmacol Exp Ther [Internet]. 2016 [cited 2022 Feb 6];358(1):83–93. Available from: http://jpet.aspetjournals.org/cgi/doi/10.1124/jpet.116.233635.

  186. Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics. 1996;6(2):159–76.

    Article  CAS  PubMed  Google Scholar 

  187. Bertilsson L, Carrillo JA, Dahl ML, Llerena A, Alm C, Bondesson U, et al. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol. 1994;38(5):471–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, et al. Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450. Anesthesiology. 1995;82(1):214–20.

    Article  CAS  PubMed  Google Scholar 

  189. Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther. 1996;276(2):658–66.

    CAS  PubMed  Google Scholar 

  190. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther. 2004;75(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  191. Koyama E, Chiba K, Tani M, Ishizaki T. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther. 1997;281(3):1199–210.

    CAS  PubMed  Google Scholar 

  192. Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedeberg's Arch Pharmacol. 1993;348(3):332–7.

    Article  CAS  Google Scholar 

  193. Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK. Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol. 1993;43(1):120–6.

    CAS  PubMed  Google Scholar 

  194. Uttamsingh V, Lu C, Miwa G, Gan L-S. Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos Biol Fate Chem. 2005;33(11):1723–8.

    Article  CAS  PubMed  Google Scholar 

  195. Gunes A, Dahl M-L. Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics. 2008;9(5):625–37.

    Article  CAS  PubMed  Google Scholar 

  196. Coffee and Caffeine Genetics Consortium, Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56.

    Article  Google Scholar 

  197. Kumondai M, Gutiérrez Rico EM, Hishinuma E, Nakanishi Y, Yamazaki S, Ueda A, et al. Functional characterization of 21 rare allelic cyp1a2 variants identified in a population of 4773 Japanese individuals by assessing phenacetin O-deethylation. J Pers Med [Internet]. 2021 [cited 2022 Mar 13];11(8):690. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401128/.

  198. Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001;41(8):823–32.

    Article  CAS  PubMed  Google Scholar 

  199. Ulrich S, Baumann B, Wolf R, Lehmann D, Peters B, Bogerts B, et al. Therapeutic drug monitoring of clozapine and relapse--a retrospective study of routine clinical data. Int J Clin Pharmacol Ther. 2003;41(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  200. Eap CB, Bender S, Jaquenoud Sirot E, Cucchia G, Jonzier-Perey M, Baumann P, et al. Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol. 2004;24(2):214–9.

    Article  CAS  PubMed  Google Scholar 

  201. Melkersson KI, Scordo MG, Gunes A, Dahl M-L. Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry. 2007;68(5):697–704.

    Article  CAS  PubMed  Google Scholar 

  202. Kamış GZ, Ayhan Y, Basar K, Özer S, Yağcıoğlu AEA. A case of clozapine intoxication presenting with atypical NMS symptoms. Int J Neuropsychopharmacol [Internet]. 2014 [cited 2022 Mar 13];17(5):819–21. Available from: https://doi.org/10.1017/S1461145713001624.

  203. Sartorius A, Hewer W, Zink M, Henn FA. High-dose clozapine intoxication. J Clin Psychopharmacol. 2002;22(1):91–2.

    Article  PubMed  Google Scholar 

  204. Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther. 2005;77(5):341–52.

    Article  CAS  PubMed  Google Scholar 

  205. Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: functional and clinical considerations. J Pers Med. 2017;8(1):E1.

    Article  PubMed  Google Scholar 

  206. Kirchheiner J, Brockmöller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  207. Shao Z, Kyriakopoulou LG, Ito S. Chapter 14 – Pharmacogenomics. In: Hempel G, editor. Handbook of analytical separations [Internet]. Elsevier Science B.V.; 2020 [cited 2022 Mar 13]. p. 321–53. (Methods of therapeutic drug monitoring including pharmacogenetics; vol. 7). Available from: https://www.sciencedirect.com/science/article/pii/B9780444640666000149.

  208. Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis. 2008;25(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  209. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7(8):e44064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MTM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96(5):542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Desta Z, Zhao X, Shin J-G, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913–58.

    Article  CAS  PubMed  Google Scholar 

  212. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.

    Article  CAS  PubMed  Google Scholar 

  213. Dean L. Diazepam therapy and CYP2C19 genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL, et al., editors. Medical genetics summaries [Internet]. Bethesda: National Center for Biotechnology Information (US); 2012 [cited 2022 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK379740/.

  214. Purkins L, Wood N, Ghahramani P, Love ER, Eve MD, Fielding A. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol [Internet]. 2003 [cited 2022 Mar 13];56(Suppl 1):37–44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884312/.

  215. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos Biol Fate Chem. 2010;38(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  216. Zhong Z, Hou J, Li B, Zhang Q, Liu S, Li C, et al. Analysis of CYP2C19 genetic polymorphism in a large ethnic Hakka population in Southern China. Med Sci Monit Int Med J Exp Clin Res [Internet]. 2017 [cited 2022 Mar 13];23:6186–92. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757864/.

  217. Beavers CJ, Naqvi IA. Clopidogrel. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022 [cited 2022 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK470539/.

  218. Scott SA, Sangkuhl K, Stein CM, Hulot J-S, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mao L, Jian C, Changzhi L, Dan H, Suihua H, Wenyi T, et al. Cytochrome CYP2C19 polymorphism and risk of adverse clinical events in clopidogrel-treated patients: a meta-analysis based on 23,035 subjects. Arch Cardiovasc Dis. 2013;106(10):517–27.

    Article  PubMed  Google Scholar 

  220. Mega JL, Simon T, Collet J-P, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, et al. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Circulation. 2017;135(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  222. Sun W, Li Y, Li J, Zhang Z, Zhu W, Liu W, et al. Variant recurrent risk among stroke patients with different CYP2C19 phenotypes and treated with clopidogrel. Platelets. 2015;26(6):558–62.

    Article  CAS  PubMed  Google Scholar 

  223. Tornio A, Backman JT. Cytochrome P450 in pharmacogenetics: an update. In: Advances in pharmacology [Internet]. Elsevier; 2018 [cited 2022 Feb 6]. p. 3–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1054358918300267.

  224. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121(4):512–8.

    Article  CAS  PubMed  Google Scholar 

  225. He Z-X, Chen X-W, Zhou Z-W, Zhou S-F. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev. 2015;47(4):470–519.

    Article  CAS  PubMed  Google Scholar 

  226. Dalton R, Lee S, Claw KG, Prasad B, Phillips BR, Shen DD, et al. Interrogation of CYP2D6 structural variant alleles improves the correlation between CYP2D6 genotype and CYP2D6-mediated metabolic activity. Clin Transl Sci [Internet]. 2020 [cited 2022 Mar 13];13(1):147–56. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951848/.

  227. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76.

    Article  PubMed  Google Scholar 

  228. Darney K, Lautz LS, Béchaux C, Wiecek W, Testai E, Amzal B, et al. Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs. Environ Int. 2021;156:106760.

    Article  CAS  PubMed  Google Scholar 

  229. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Somogyi AA, Coller JK, Barratt DT. Pharmacogenetics of opioid response. Clin Pharmacol Ther. 2015;97(2):125–7.

    Article  CAS  PubMed  Google Scholar 

  231. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.

    CAS  PubMed  Google Scholar 

  232. Zhou S-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9(4):310–22.

    Article  CAS  PubMed  Google Scholar 

  233. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–8.

    Article  CAS  PubMed  Google Scholar 

  234. Kerr BM, Thummel KE, Wurden CJ, Klein SM, Kroetz DL, Gonzalez FJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994;47(11):1969–79.

    Article  CAS  PubMed  Google Scholar 

  235. Ganesapandian M, Ramasamy K, Adithan S, Narayan SK. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol [Internet]. 2019 [cited 2022 Mar 13];51(6):384–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984020/.

  236. Guillemette C, Lévesque É, Rouleau M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther. 2014;96(3):324–39.

    Article  CAS  PubMed  Google Scholar 

  237. Kondo T, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, et al. Uridine diphosphate-glucuronosyltransferase (UGT) 2B subfamily interspecies differences in carnivores. Toxicol Sci [Internet]. 2017 [cited 2022 Mar 13];158(1):90–100. Available from: https://doi.org/10.1093/toxsci/kfx072.

  238. Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M. Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica Fate Foreign Compd Biol Syst. 2012;42(3):266–77.

    Article  CAS  Google Scholar 

  239. Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, et al. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab Dispos Biol Fate Chem. 2009;37(8):1759–68.

    Article  CAS  PubMed  Google Scholar 

  240. Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos Biol Fate Chem. 2009;37(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  241. Gaganis P, Miners JO, Brennan JS, Thomas A, Knights KM. Human renal cortical and medullary UDP-glucuronosyltransferases (UGTs): immunohistochemical localization of UGT2B7 and UGT1A enzymes and kinetic characterization of S-naproxen glucuronidation. J Pharmacol Exp Ther. 2007;323(2):422–30.

    Article  CAS  PubMed  Google Scholar 

  242. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581–616.

    Article  CAS  PubMed  Google Scholar 

  243. Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos Biol Fate Chem. 2004;32(8):775–8.

    Article  CAS  PubMed  Google Scholar 

  244. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.

    Article  CAS  PubMed  Google Scholar 

  245. Duguay Y, Báár C, Skorpen F, Guillemette C. A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin Pharmacol Ther. 2004;75(3):223–33.

    Article  CAS  PubMed  Google Scholar 

  246. Ehmer U, Vogel A, Schütte JK, Krone B, Manns MP, Strassburg CP. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology Baltim MD. 2004;39(4):970–7.

    Article  CAS  Google Scholar 

  247. Iwai M, Maruo Y, Ito M, Yamamoto K, Sato H, Takeuchi Y. Six novel UDP-glucuronosyltransferase (UGT1A3) polymorphisms with varying activity. J Hum Genet. 2004;49(3):123–8.

    Article  CAS  PubMed  Google Scholar 

  248. Jinno H, Saeki M, Saito Y, Tanaka-Kagawa T, Hanioka N, Sai K, et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther. 2003;306(2):688–93.

    Article  CAS  PubMed  Google Scholar 

  249. Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO. Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol. 2012;84(11):1511–21.

    Article  CAS  PubMed  Google Scholar 

  250. Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, von Moltke LL, Greenblatt DJ, et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther. 2005;313(3):1340–6.

    Article  CAS  PubMed  Google Scholar 

  251. Mackenzie PI, Miners JO, McKinnon RA. Polymorphisms in UDP glucuronosyltransferase genes: functional consequences and clinical relevance. Clin Chem Lab Med. 2000;38(9):889–92.

    Article  CAS  PubMed  Google Scholar 

  252. Miners JO, McKinnon RA, Mackenzie PI. Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology. 2002;181–182:453–6.

    Article  PubMed  Google Scholar 

  253. Villeneuve L, Girard H, Fortier L-C, Gagné J-F, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther. 2003;307(1):117–28.

    Article  CAS  PubMed  Google Scholar 

  254. Wilson W, Pardo-Manuel de Villena F, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, et al. Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics. 2004;84(4):707–14.

    Article  CAS  PubMed  Google Scholar 

  255. Shah SAV, Paradkar M, Desai D, Ashavaid TF. Nucleoside diphosphate-linked moiety X-type motif 15 C415T variant as a predictor for thiopurine-induced toxicity in Indian patients. J Gastroenterol Hepatol. 2017;32(3):620–4.

    Article  CAS  PubMed  Google Scholar 

  256. Nerenz RD. Chapter 32 – Pharmacogenomics and personalized medicine in the treatment of human diseases. In: Coleman WB, Tsongalis GJ, editors. Molecular pathology. 2nd ed [Internet]. Academic Press; 2018 [cited 2022 Mar 13]. p. 731–43. Available from: https://www.sciencedirect.com/science/article/pii/B9780128027615000328.

  257. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui C-H, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105.

    Article  CAS  PubMed  Google Scholar 

  258. Devasia AJ, Illangeswaran RSS, Raj IX, George B, Balasubramanian P. NUDT15 polymorphism explains serious toxicity to azathioprine in Indian patients with chronic immune thrombocytopenia and autoimmune hemolytic anemia: a case series. Drug Metab Pers Ther [Internet]. 2020 [cited 2022 Mar 13];35(4). Available from: https://www.degruyter.com/document/doi/10.1515/dmpt-2020-0128/html?lang=en.

  259. Weitzel KW, Smith DM, Elsey AR, Duong BQ, Burkley B, Clare-Salzler M, et al. Implementation of standardized clinical processes for TPMT testing in a diverse multidisciplinary population: challenges and lessons learned. Clin Transl Sci. 2018;11(2):175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Dubinsky MC, Yang H, Hassard PV, Seidman EG, Kam LY, Abreu MT, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122(4):904–15.

    Article  CAS  PubMed  Google Scholar 

  261. Tanaka Y, Saito Y. Importance of NUDT15 polymorphisms in thiopurine treatments. J Pers Med [Internet]. 2021 [cited 2022 Mar 14];11(8):778. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399029/.

  262. Yu C-H, Chang Y-H, Wang D-S, Jou S-T, Lin C-Y, Lin K-H, et al. Determination of NUDT15 variants by targeted sequencing can identify compound heterozygosity in pediatric acute lymphoblastic leukemia patients. Sci Rep [Internet]. 2020 [cited 2022 Mar 14];10(1):14400. Available from: https://www.nature.com/articles/s41598-020-71468-y.

  263. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R, et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol [Internet]. 2016 [cited 2022 Mar 14]; Available from: https://ascopubs.org/doi/pdf/10.1200/JCO.2001.19.8.2293.

  264. Fan X, Yin D, Men R, Xu H, Yang L. NUDT15 polymorphism confer increased susceptibility to thiopurine-induced leukopenia in patients with autoimmune hepatitis and related cirrhosis. Front Pharmacol [Internet]. 2019 [cited 2022 Mar 14];10. Available from: https://www.frontiersin.org/article/10.3389/fphar.2019.00346.

  265. Wusk B, Kullak-Ublick GA, Rammert C, von Eckardstein A, Fried M, Rentsch KM. Therapeutic drug monitoring of thiopurine drugs in patients with inflammatory bowel disease or autoimmune hepatitis. Eur J Gastroenterol Hepatol. 2004;16(12):1407–13.

    Article  CAS  PubMed  Google Scholar 

  266. Lennard L, Singleton HJ. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr. 1992;583(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  267. Gilissen LPL, Derijks LJJ, Bos LP, Bus PJ, Hooymans PM, Engels LGJB. Therapeutic drug monitoring in patients with inflammatory bowel disease and established azathioprine therapy. Clin Drug Investig. 2004;24(8):479–86.

    Article  CAS  PubMed  Google Scholar 

  268. Yarur AJ, Abreu MT, Deshpande AR, Kerman DH, Sussman DA. Therapeutic drug monitoring in patients with inflammatory bowel disease. World J Gastroenterol WJG [Internet]. 2014 [cited 2022 Mar 14];20(13):3475–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974514/.

  269. Cuffari C. A physician’s guide to azathioprine metabolite testing. Gastroenterol Hepatol [Internet]. 2006 [cited 2022 Mar 14];2(1):58–63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307263/.

  270. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz H-J, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427(6974):537–41.

    Article  CAS  PubMed  Google Scholar 

  271. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee M-TM, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  273. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.

    Article  CAS  PubMed  Google Scholar 

  274. Yan X, Yang F, Zhou H, Zhang H, Liu J, Ma K, et al. Effects of VKORC1 genetic polymorphisms on warfarin maintenance dose requirement in a Chinese Han population. Med Sci Monit Int Med J Exp Clin Res [Internet]. 2015 [cited 2022 Mar 14];21:3577–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657763/.

  275. Cho S, Yoon Y-R. Understanding the pharmacokinetics of prodrug and metabolite. Transl Clin Pharmacol [Internet]. 2018 [cited 2022 Jan 23];26(1):1–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989223/.

  276. Zhang Z, Tang W. Drug metabolism in drug discovery and development. Acta Pharm Sin B [Internet]. 2018 [cited 2022 Jan 23];8(5):721–32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146880/.

  277. Rang H, Dale M, Ritter J, Flower R. Absorption and distribution of drugs. 2007.

    Google Scholar 

  278. Oellerich M, Armstrong VW. Prodrug metabolites: implications for therapeutic drug monitoring. Clin Chem [Internet]. 2001 [cited 2022 Jan 27];47(5):805–6. Available from: https://doi.org/10.1093/clinchem/47.5.805.

  279. Huttunen KM, Raunio H, Rautio J. Prodrugs--from serendipity to rational design. Pharmacol Rev. 2011;63(3):750–71.

    Article  CAS  PubMed  Google Scholar 

  280. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–55.

    Article  CAS  PubMed  Google Scholar 

  281. Christie JD, Edwards LB, Aurora P, Dobbels F, Kirk R, Rahmel AO, et al. The registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult lung and heart-lung transplantation report-2009. J Heart Lung Transplant. 2009;28(10):1031–49.

    Article  PubMed  Google Scholar 

  282. Baraldo M, Sponga S, Livi U. Therapeutic drug monitoring of micophenolate mofetil in cardiac transplant patients by limited sampling strategy: an update. 2018.

    Google Scholar 

  283. DeNofrio D, Loh E, Kao A, Korecka M, Pickering FW, Craig KA, et al. Mycophenolic acid concentrations are associated with cardiac allograft rejection. J Heart Lung Transplant. 2000;19(11):1071–6.

    Article  CAS  PubMed  Google Scholar 

  284. Dubrey SW, Holt DW, Banner N. Measurement of mycophenolate mofetil plasma levels after heart transplantation and a potential side effect of high levels. Ther Drug Monit. 1999;21(3):325–6.

    Article  CAS  PubMed  Google Scholar 

  285. Eisen H, Ross H. Optimizing the immunosuppressive regimen in heart transplantation. J Heart Lung Transplant. 2004;23(5 Suppl):S207–13.

    Article  PubMed  Google Scholar 

  286. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant. 2003;3(5):534–42.

    Article  CAS  PubMed  Google Scholar 

  287. Filler G. Value of therapeutic drug monitoring of MMF therapy in pediatric transplantation. Pediatr Transplant. 2006;10(6):707–11.

    Article  CAS  PubMed  Google Scholar 

  288. Godron-Dubrasquet A, Woillard J-B, Decramer S, Fila M, Guigonis V, Tellier S, et al. Mycophenolic acid area under the concentration-time curve is associated with therapeutic response in childhood-onset lupus nephritis. Pediatr Nephrol Berl Ger. 2021;36(2):341–7.

    Article  Google Scholar 

  289. Gammal RS, Crews KR, Haidar CE, Hoffman JM, Baker DK, Barker PJ, et al. Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics [Internet]. 2016 [cited 2022 Mar 5];138(1):e20153479. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925073/.

  290. Rodieux F, Vutskits L, Posfay-Barbe KM, Habre W, Piguet V, Desmeules JA, et al. When the safe alternative is not that safe: tramadol prescribing in children. Front Pharmacol [Internet]. 2018 [cited 2022 Mar 5];9. Available from: https://www.frontiersin.org/article/10.3389/fphar.2018.00148.

  291. Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL, et al., editors. Codeine therapy and CYP2D6 genotype. In: Medical genetics summaries [Internet]. Bethesda: National Center for Biotechnology Information (US); 2012 [cited 2022 Mar 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK100662/.

  292. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen J-T, Lötsch J, Roots I, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J [Internet]. 2007 [cited 2022 Mar 5];7(4):257–65. Available from: https://www.nature.com/articles/6500406.

  293. FDA. FDA Drug Safety Podcast: FDA restricts use of prescription codeine pain and cough medicines and tramadol pain medicines in children; recommends against use in breastfeeding women. FDA [Internet]. 2022 [cited 2022 Mar 6]; Available from: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-drug-safety-podcast-fda-restricts-use-prescription-codeine-pain-and-cough-medicines-and-tramadol.

  294. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    Article  CAS  PubMed  Google Scholar 

  295. International Conference on Harmonisation Expert Working Group. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline. Guideline for good clinical practice. 1997 CFR ICH Guidel [Internet]. 1997 [cited 2022 Mar 30]; Available from: https://ci.nii.ac.jp/naid/10020348247/.

  296. Winter ME. Basic clinical pharmacokinetics. Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  297. Steijns LSW, Bouw J, van der Weide J. Evaluation of fluorescence polarization assays for measuring valproic acid, phenytoin, carbamazepine and phenobarbital in serum. Ther Drug Monit. 2002;24(3):432–5.

    Article  CAS  PubMed  Google Scholar 

  298. Roy SMN, Yetal SM, Vaidya VV, Joshi SS. Determination and quantification of phenytoin in human plasma by liquid chromatography with electrospray ionization tandem mass spectrometry. E-J Chem [Internet]. 2008 [cited 2022 Mar 30];5(1):169–76. Available from: https://www.hindawi.com/journals/jchem/2008/362512/.

  299. Patel JA, Clayton LT, LeBel CP, McClatchey KD. Abnormal theophylline levels in plasma by fluorescence polarization immunoassay in patients with renal disease. Ther Drug Monit. 1984;6(4):458–60.

    Article  CAS  PubMed  Google Scholar 

  300. Frank EL, Schwarz EL, Juenke J, Annesley TM, Roberts WL. Performance characteristics of four immunoassays for antiepileptic drugs on the IMMULITE 2000 automated analyzer. Am J Clin Pathol. 2002;118(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  301. Rane CT, Dalvi SS, Gogtay NJ, Shah PU, Kshirsagar NA. A pharmacoeconomic analysis of the impact of therapeutic drug monitoring in adult patients with generalized tonic-clonic epilepsy. Br J Clin Pharmacol. 2001;52(2):193–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Bootman JL, Wertheimer AI, Zaske D, Rowland C. Individualizing gentamicin dosage regimens in burn patients with gram-negative septicemia: a cost--benefit analysis. J Pharm Sci. 1979;68(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  303. Streetman DS, Nafziger AN, Destache CJ, Bertino AS. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy. 2001;21(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  304. Shaw LM, Kaplan B, Brayman KL. Prospective investigations of concentration-clinical response for immunosuppressive drugs provide the scientific basis for therapeutic drug monitoring. Clin Chem. 1998;44(2):381–7.

    Article  CAS  PubMed  Google Scholar 

  305. Velasco A, Chung O, Raza F, Pandey A, Brinker S, Arbique D, et al. Cost-effectiveness of therapeutic drug monitoring in diagnosing primary aldosteronism in patients with resistant hypertension. J Clin Hypertens [Internet]. 2015 [cited 2022 Mar 31];17(9):713–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562815/.

  306. McNeill RP, Barclay ML. Cost-effectiveness of therapeutic drug monitoring in inflammatory bowel disease. Curr Opin Pharmacol [Internet]. 2020 [cited 2022 Mar 31];55:41–6. Available from: https://www.sciencedirect.com/science/article/pii/S1471489220300874.

  307. Dubinsky MC, Reyes E, Ofman J, Chiou C-F, Wade S, Sandborn WJ. A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol. 2005;100(10):2239–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akingbasote, J., Szlapinski, S., Hilmas, E., Miller, P., Rine, N. (2022). Therapeutic Drug Monitoring and Toxicology: Relevance of Measuring Metabolites. In: Amponsah, S.K., Pathak, Y.V. (eds) Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-12398-6_13

Download citation

Publish with us

Policies and ethics