Abstract
Proteoglycans, and especially their GAG components, participate in numerous biologically significant interactions with growth factors, chemokines, morphogens, guidance molecules, survival factors, and other extracellular and cell-surface components. These interactions are often critical to the basic developmental processes of cellular proliferation and differentiation, as well as to both the onset of disease sequelae and prevention of disease progression. In many tissues, proteoglycans and especially their glycosaminoglycan (GAG) components are mediators of these processes. The GAG family is characterized by covalently linked repeating disaccharides forming long unbranched polysaccharide chains. Thus far in higher eukaryotes, the family consists of chondroitin sulfate (CS), heparin/heparan sulfate (HS), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronan (HA). All GAG chains (except HA) are characteristically modified by varying amounts of esterified sulfate. One or more GAG chains are usually found in nature bound to polypeptide backbones in the form of proteoglycans; HA is the exception. In the nervous system, GAG/proteoglycan-mediated interactions participate in proliferation and synaptogenesis, neural plasticity, and regeneration. This review focuses on the structure, chemistry and function of GAGs in nervous system development, disease, function and injury response.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- APP:
-
β-amyloid precursor protein
- CS:
-
Chondroitin sulfate
- DS:
-
Dermatan sulfate
- FGF:
-
Fibroblast growth factor
- GAG:
-
Glycosaminoglycan
- Gal:
-
Galactose
- GalNAc:
-
N-acetylgalactosamine
- GB:
-
Glioblastoma
- GlcA:
-
Glucuronic acid
- GlcN:
-
Glucosamine
- GlcNAc:
-
N-acetyl glucosamine
- HA:
-
Hyaluronan
- HS:
-
Heparan sulfate
- IdoA:
-
Iduronic acid
- LAR:
-
Leukocyte common antigen-related phosphatase
- NDST:
-
N-deacetylase/N-sulfotransferases
- NSC:
-
Neural stem cell
- PAPS:
-
3′-phosphoadenosine 5′-phosphosulfate
- PNN:
-
Perineuronal net
- VZ:
-
Ventricular zone
References
Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40(6–7):1101–10. https://doi.org/10.1016/j.biocel.2007.12.005.
Ahmed YA, Yates EA, Moss DJ, Loeven MA, Hussain SA, Hohenester E, et al. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity. Mol BioSyst. 2016;12(10):3166–75. https://doi.org/10.1039/c6mb00432f.
Akatsu C, Mizumoto S, Kaneiwa T, Maccarana M, Malmstrom A, Yamada S, et al. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain. Glycobiology. 2011;21(5):565–74. https://doi.org/10.1093/glycob/cwq208.
Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells. 2008;26(3):798–809. https://doi.org/10.1634/stemcells.2007-0448.
Al-Mayhani TF, Heywood RM, Vemireddy V, Lathia JD, Piccirillo SGM, Watts C. A non-hierarchical organization of tumorigenic NG2 cells in glioblastoma promoted by EGFR. Neuro-Oncology. 2019;21(6):719–29. https://doi.org/10.1093/neuonc/noy204.
Ariga T, Miyatake T, Yu RK. Role of proteoglycans and glycosaminoglycans in the pathogenesis of Alzheimer’s disease and related disorders: amyloidogenesis and therapeutic strategies--a review. J Neurosci Res. 2010;88(11):2303–15. https://doi.org/10.1002/jnr.22393.
Arranz AM, Perkins KL, Irie F, Lewis DP, Hrabe J, Xiao F, et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J Neurosci. 2014;34(18):6164–76. https://doi.org/10.1523/JNEUROSCI.3458-13.2014.
Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K. Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem. 2004;279(13):12346–54. https://doi.org/10.1074/jbc.M313523200.
Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.
Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev. 2000;80(4):1267–90. https://doi.org/10.1152/physrev.2000.80.4.1267.
Banecka-Majkutewicz Z, Jakobkiewicz-Banecka J, Gabig-Ciminska M, Wegrzyn A, Wegrzyn G. Putative biological mechanisms of efficiency of substrate reduction therapies for mucopolysaccharidoses. Arch Immunol Ther Exp. 2012;60(6):461–8. https://doi.org/10.1007/s00005-012-0195-9.
Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, et al. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95(1):169–79. e3. https://doi.org/10.1016/j.neuron.2017.06.007.
Bao X, Mikami T, Yamada S, Faissner A, Muramatsu T, Sugahara K. Heparin-binding growth factor, pleiotrophin, mediates neuritogenic activity of embryonic pig brain-derived chondroitin sulfate/dermatan sulfate hybrid chains. J Biol Chem. 2005;280(10):9180–91. https://doi.org/10.1074/jbc.M413423200.
Beckman M, Holsinger RM, Small DH. Heparin activates beta-secretase (BACE1) of Alzheimer’s disease and increases autocatalysis of the enzyme. Biochemistry. 2006;45(21):6703–14. https://doi.org/10.1021/bi052498t.
Bennett M, Chin A, Lee HJ, Morales Cestero E, Strazielle N, Ghersi-Egea JF, et al. Proteoglycan 4 reduces neuroinflammation and protects the blood-brain barrier after traumatic brain injury. J Neurotrauma. 2021;38(4):385–98. https://doi.org/10.1089/neu.2020.7229.
Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77. https://doi.org/10.1146/annurev.biochem.68.1.729.
Bixby JL, Baerwald-De la Torre K, Wang C, Rathjen FG, Ruegg MA. A neuronal inhibitory domain in the N-terminal half of agrin. J Neurobiol. 2002;50(2):164–79. https://doi.org/10.1002/neu.10025.
Bornemann DJ, Park S, Phin S, Warrior R. A translational block to HSPG synthesis permits BMP signaling in the early drosophila embryo. Development. 2008;135(6):1039–47. https://doi.org/10.1242/dev.017061.
Bouvier C, Bartoli C, Aguirre-Cruz L, Virard I, Colin C, Fernandez C, et al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J Neurosurg. 2003;99(2):344–50. https://doi.org/10.3171/jns.2003.99.2.0344.
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019;10(1):3879. https://doi.org/10.1038/s41467-019-11707-7.
Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull. 2011;84(4–5):306–16. https://doi.org/10.1016/j.brainresbull.2010.06.015.
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–40. https://doi.org/10.1038/416636a.
Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, et al. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol. 2002;22(21):7417–27. https://doi.org/10.1128/MCB.22.21.7417-7427.2002.
Brickman YG, Ford MD, Gallagher JT, Nurcombe V, Bartlett PF, Turnbull JE. Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J Biol Chem. 1998;273(8):4350–9. https://doi.org/10.1074/jbc.273.8.4350.
Brittis PA, Canning DR, Silver J. Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science. 1992;255(5045):733–6. https://doi.org/10.1126/science.1738848.
Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience. 2001;104(2):359–69. https://doi.org/10.1016/s0306-4522(01)00082-3.
Bulow HE, Berry KL, Topper LH, Peles E, Hobert O. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci U S A. 2002;99(9):6346–51. https://doi.org/10.1073/pnas.092128099.
Burnside ER, Bradbury EJ. Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol. 2014;40(1):26–59. https://doi.org/10.1111/nan.12114.
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.
Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci. 2007;27(9):2176–85. https://doi.org/10.1523/JNEUROSCI.5176-06.2007.
Carter LM, McMahon SB, Bradbury EJ. Delayed treatment with chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Exp Neurol. 2011;228(1):149–56. https://doi.org/10.1016/j.expneurol.2010.12.023.
Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol. 2005;15(1):116–20. https://doi.org/10.1016/j.conb.2005.01.014.
Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain. 2010;133(Pt 8):2331–47. https://doi.org/10.1093/brain/awq145.
Carulli D, Broersen R, de Winter F, Muir EM, Meskovic M, de Waal M, et al. Cerebellar plasticity and associative memories are controlled by perineuronal nets. Proc Natl Acad Sci U S A. 2020;117(12):6855–65. https://doi.org/10.1073/pnas.1916163117.
Cecchi F, Pajalunga D, Fowler CA, Uren A, Rabe DC, Peruzzi B, et al. Targeted disruption of heparan sulfate interaction with hepatocyte and vascular endothelial growth factors blocks normal and oncogenic signaling. Cancer Cell. 2012;22(2):250–62. https://doi.org/10.1016/j.ccr.2012.06.029.
Chekenya M, Pilkington GJ. NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol. 2002;31(6–7):507–21. https://doi.org/10.1023/a:1025795715377.
Cho JY, Chak K, Andreone BJ, Wooley JR, Kolodkin AL. The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 2012;26(19):2222–35. https://doi.org/10.1101/gad.193136.112.
Chung KY, Shum DK, Chan SO. Expression of chondroitin sulfate proteoglycans in the chiasm of mouse embryos. J Comp Neurol. 2000a;417(2):153–63. https://doi.org/10.1002/(sici)1096-9861(20000207)417:2<153::aid-cne2>3.0.co;2-d.
Chung KY, Taylor JS, Shum DK, Chan SO. Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos. Development. 2000b;127(12):2673–83.
Condomitti G, de Wit J. Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci. 2018;11:14. https://doi.org/10.3389/fnmol.2018.00014.
Conrad AH, Zhang Y, Tasheva ES, Conrad GW. Proteomic analysis of potential keratan sulfate, chondroitin sulfate A, and hyaluronic acid molecular interactions. Invest Ophthalmol Vis Sci. 2010;51(9):4500–15. https://doi.org/10.1167/iovs.09-4914.
Cortes M, Cortes LK, Schwartz NB. Mapping proteoglycan function using novel genetic strategies. Methods Mol Biol. 2022;2303:731–52. https://doi.org/10.1007/978-1-0716-1398-6_55.
Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol. 2007;206(2):159–71. https://doi.org/10.1016/j.expneurol.2007.05.001.
Cua RC, Lau LW, Keough MB, Midha R, Apte SS, Yong VW. Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia. 2013;61(6):972–84. https://doi.org/10.1002/glia.22489.
Cui H, Hung AC, Freeman C, Narkowicz C, Jacobson GA, Small DH. Size and sulfation are critical for the effect of heparin on APP processing and Abeta production. J Neurochem. 2012;123(3):447–57. https://doi.org/10.1111/j.1471-4159.2012.07929.x.
Cui H, Freeman C, Jacobson GA, Small DH. Proteoglycans in the central nervous system: role in development, neural repair, and Alzheimer’s disease. IUBMB Life. 2013;65(2):108–20. https://doi.org/10.1002/iub.1118.
de Sousa GF, Palmero CY, de Souza-Menezes J, Araujo AK, Guimaraes AG, de Barros CM. Dermatan sulfate obtained from the Phallusia nigra marine organism is responsible for antioxidant activity and neuroprotection in the neuroblastoma-2A cell lineage. Int J Biol Macromol. 2020;164:1099–111. https://doi.org/10.1016/j.ijbiomac.2020.06.285.
de Wit J, O’Sullivan ML, Savas JN, Condomitti G, Caccese MC, Vennekens KM, et al. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron. 2013;79(4):696–711. https://doi.org/10.1016/j.neuron.2013.06.049.
Deak A, Bacskai T, Gaal B, Racz E, Matesz K. Effect of unilateral labyrinthectomy on the molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat. Neurosci Lett. 2012;513(1):1–5. https://doi.org/10.1016/j.neulet.2012.01.076.
Deepa SS, Umehara Y, Higashiyama S, Itoh N, Sugahara K. Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J Biol Chem. 2002;277(46):43707–16. https://doi.org/10.1074/jbc.M207105200.
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem. 2006;281(26):17789–800. https://doi.org/10.1074/jbc.M600544200.
Diaz-Balzac CA, Lazaro-Pena MI, Tecle E, Gomez N, Bulow HE. Complex cooperative functions of heparan sulfate proteoglycans shape nervous system development in Caenorhabditis elegans. G3 (Bethesda). 2014;4(10):1859–70. https://doi.org/10.1534/g3.114.012591.
Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci. 2012;15(5):703–12. https://doi.org/10.1038/nn.3070.
Djerbal L, Lortat-Jacob H, Kwok JCF. Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J. 2017;34(3):363–76. https://doi.org/10.1007/s10719-017-9761-z.
Domowicz MS, Sanders TA, Ragsdale CW, Schwartz NB. Aggrecan is expressed by embryonic brain glia and regulates astrocyte development. Dev Biol. 2008;315(1):114–24. https://doi.org/10.1016/j.ydbio.2007.12.014.
Domowicz MS, Henry JG, Wadlington N, Navarro A, Kraig RP, Schwartz NB. Astrocyte precursor response to embryonic brain injury. Brain Res. 2011;1389:35–49. https://doi.org/10.1016/j.brainres.2011.03.006.
Domowicz M, Wadlington NL, Henry JG, Diaz K, Munoz MJ, Schwartz NB. Glial cell responses in a murine multifactorial perinatal brain injury model. Brain Res. 2018;1681:52–63. https://doi.org/10.1016/j.brainres.2017.12.020.
Domowicz MS, Chan WC, Claudio-Vazquez P, Henry JG, Ware CB, Andrade J, et al. Global brain transcriptome analysis of a Tpp1 neuronal ceroid lipofuscinoses mouse model. ASN Neuro. 2019;11:1759091419843393. https://doi.org/10.1177/1759091419843393.
Domowicz MS, Chan WC, Claudio-Vazquez P, Gonzalez T, Schwartz NB. Brain transcriptome analysis of a CLN2 mouse model as a function of disease progression. J Neuroinflammation. 2021;18(1):262. https://doi.org/10.1186/s12974-021-02302-z.
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209(2):378–88. https://doi.org/10.1016/j.expneurol.2007.06.009.
Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT, Vincent C, et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer. 2011;104(4):635–42. https://doi.org/10.1038/bjc.2011.11.
Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV, McKenna JK, et al. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. elife. 2020;9:e54469. https://doi.org/10.7554/eLife.54469.
Dudas B, Semeniken K. Glycosaminoglycans and neuroprotection. Handb Exp Pharmacol. 2012;207:325–43. https://doi.org/10.1007/978-3-642-23056-1_14.
Dundar M, Muller T, Zhang Q, Pan J, Steinmann B, Vodopiutz J, et al. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet. 2009;85(6):873–82. https://doi.org/10.1016/j.ajhg.2009.11.010.
Ethell IM, Yamaguchi Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol. 1999;144(3):575–86. https://doi.org/10.1083/jcb.144.3.575.
Fang R, Jiang Q, Guan Y, Gao P, Zhang R, Zhao Z, et al. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity. 2021;54(5):962–75. e8. https://doi.org/10.1016/j.immuni.2021.03.011.
Fawcett J. Molecular control of brain plasticity and repair. Prog Brain Res. 2009;175:501–9. https://doi.org/10.1016/S0079-6123(09)17534-9.
Fawcett JW. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem Res. 2020;45(1):144–58. https://doi.org/10.1007/s11064-019-02844-y.
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377–91.
Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20(8):451–65. https://doi.org/10.1038/s41583-019-0196-3.
Fecarotta S, Tarallo A, Damiano C, Minopoli N, Parenti G. Pathogenesis of mucopolysaccharidoses, an update. Int J Mol Sci. 2020;21(7):2515. https://doi.org/10.3390/ijms21072515.
Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P. Differential effects of glycosaminoglycans on neurite outgrowth from hippocampal and thalamic neurones. J Cell Sci. 1994;107(Pt 6):1437–48.
Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci. 2011;31(40):14051–66. https://doi.org/10.1523/JNEUROSCI.1737-11.2011.
Fitch MT, Silver J. Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res. 1997;290(2):379–84. https://doi.org/10.1007/s004410050944.
Ford-Perriss M, Turner K, Guimond S, Apedaile A, Haubeck HD, Turnbull J, et al. Localisation of specific heparan sulfate proteoglycans during the proliferative phase of brain development. Dev Dyn. 2003;227(2):170–84. https://doi.org/10.1002/dvdy.10298.
Forsberg M, Holmborn K, Kundu S, Dagalv A, Kjellen L, Forsberg-Nilsson K. Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J Biol Chem. 2012;287(14):10853–62. https://doi.org/10.1074/jbc.M111.337030.
Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging (Albany NY). 2017;9(6):1607–22. https://doi.org/10.18632/aging.101256.
Frischknecht R, Gundelfinger ED. The brain’s extracellular matrix and its role in synaptic plasticity. Adv Exp Med Biol. 2012;970:153–71. https://doi.org/10.1007/978-3-7091-0932-8_7.
Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci. 2009;12(7):897–904. https://doi.org/10.1038/nn.2338.
Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry. 2009;48(24):5631–41. https://doi.org/10.1021/bi9002138.
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5(7):526–42. https://doi.org/10.1038/nrc1649.
Galindo LT, Mundim M, Pinto AS, Chiarantin GMD, Almeida MES, Lamers ML, et al. Chondroitin sulfate impairs neural stem cell migration through rock activation. Mol Neurobiol. 2017;55:3185–95. https://doi.org/10.1007/s12035-017-0565-8.
Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev. 2007;54(1):1–18. https://doi.org/10.1016/j.brainresrev.2006.09.006.
Galtrey CM, Kwok JC, Carulli D, Rhodes KE, Fawcett JW. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci. 2008;27(6):1373–90. https://doi.org/10.1111/j.1460-9568.2008.06108.x.
Garcia-Alias G, Petrosyan HA, Schnell L, Horner PJ, Bowers WJ, Mendell LM, et al. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci. 2011;31(49):17788–99. https://doi.org/10.1523/JNEUROSCI.4308-11.2011.
Garnier P, Gibbs RV, Rider CC. A role for chondroitin sulphate B in the activity of interleukin 12 in stimulating gamma-interferon secretion. Immunol Lett. 2003;85(1):53–8. https://doi.org/10.1016/s0165-2478(02)00211-0.
Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol. 2014;258:24–34. https://doi.org/10.1016/j.expneurol.2013.11.020.
Georgescu MM. Multi-platform classification of IDH-wild-type glioblastoma based on ERK/MAPK pathway: diagnostic, prognostic and therapeutic implications. Cancers (Basel). 2021;13(18). https://doi.org/10.3390/cancers13184532.
Gesteira TF, Coulson-Thomas YM, Coulson-Thomas VJ. Anti-inflammatory properties of the glial scar. Neural Regen Res. 2016;11(11):1742–3. https://doi.org/10.4103/1673-5374.194710.
Gherardini L, Gennaro M, Pizzorusso T. Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb Cortex. 2015;25(1):202–12. https://doi.org/10.1093/cercor/bht217.
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. Alpha-synuclein aggregation and its modulation. Int J Biol Macromol. 2017;100:37–54. https://doi.org/10.1016/j.ijbiomac.2016.10.021.
Giros A, Morante J, Gil-Sanz C, Fairen A, Costell M. Perlecan controls neurogenesis in the developing telencephalon. BMC Dev Biol. 2007;7:29. https://doi.org/10.1186/1471-213X-7-29.
Gomez Toledo A, Nilsson J, Noborn F, Sihlbom C, Larson G. Positive mode LC-MS/MS analysis of chondroitin Sulfate modified glycopeptides derived from light and heavy chains of the human inter-alpha-trypsin inhibitor complex. Mol Cell Proteomics. 2015;14(12):3118–31. https://doi.org/10.1074/mcp.M115.051136.
Goossens D, Van Gestel S, Claes S, De Rijk P, Souery D, Massat I, et al. A novel CpG-associated brain-expressed candidate gene for chromosome 18q-linked bipolar disorder. Mol Psychiatry. 2003;8(1):83–9. https://doi.org/10.1038/sj.mp.4001190.
Grobe K, Inatani M, Pallerla SR, Castagnola J, Yamaguchi Y, Esko JD. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development. 2005;132(16):3777–86. https://doi.org/10.1242/dev.01935.
Grumet M, Friedlander DR, Sakurai T. Functions of brain chondroitin sulfate proteoglycans during developments: interactions with adhesion molecules. Perspect Dev Neurobiol. 1996;3(4):319–30.
Gu W-L, Fu S-L, Wang Y-X, Li Y, Lu H-Z, Xu X-M, et al. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway. BMC Neurosci. 2009;10:128. https://doi.org/10.1186/1471-2202-10-128.
Haerry TE, Heslip TR, Marsh JL, O’Connor MB. Defects in glucuronate biosynthesis disrupt wingless signaling in drosophila. Development. 1997;124(16):3055–64.
Hagihara K, Watanabe K, Chun J, Yamaguchi Y. Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells. Dev Dyn. 2000;219(3):353–67. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1059>3.0.CO;2-#.
Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, et al. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia. 2003a;42(2):130–8. https://doi.org/10.1002/glia.10207.
Hagino S, Iseki K, Mori T, Zhang Y, Sakai N, Yokoya S, et al. Expression pattern of glypican-1 mRNA after brain injury in mice. Neurosci Lett. 2003b;349(1):29–32. https://doi.org/10.1016/s0304-3940(03)00690-6.
Hebert JM, Lin M, Partanen J, Rossant J, McConnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development. 2003;130(6):1101–11. https://doi.org/10.1242/dev.00334.
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol. 2018;68–69:589–601. https://doi.org/10.1016/j.matbio.2018.01.015.
Hikino M, Mikami T, Faissner A, Vilela-Silva AC, Pavao MS, Sugahara K. Oversulfated dermatan sulfate exhibits neurite outgrowth-promoting activity toward embryonic mouse hippocampal neurons: implications of dermatan sulfate in neuritogenesis in the brain. J Biol Chem. 2003;278(44):43744–54. https://doi.org/10.1074/jbc.M308169200.
Hill JJ, Jin K, Mao XO, Xie L, Greenberg DA. Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc Natl Acad Sci U S A. 2012;109(23):9155–60. https://doi.org/10.1073/pnas.1205697109.
Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M. Versican interacts with chemokines and modulates cellular responses. J Biol Chem. 2001;276(7):5228–34. https://doi.org/10.1074/jbc.M007542200.
Hoffman-Kim D, Lander AD, Jhaveri S. Patterns of chondroitin sulfate immunoreactivity in the developing tectum reflect regional differences in glycosaminoglycan biosynthesis. J Neurosci. 1998;18(15):5881–90.
Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 2013;110(33):E3138–47. https://doi.org/10.1073/pnas.1301440110.
Hoogewerf AJ, Kuschert GS, Proudfoot AE, Borlat F, Clark-Lewis I, Power CA, et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry. 1997;36(44):13570–8. https://doi.org/10.1021/bi971125s.
Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, et al. Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology. 2010;20(2):175–86. https://doi.org/10.1093/glycob/cwp159.
Hu F, Dzaye O, Hahn A, Yu Y, Scavetta RJ, Dittmar G, et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages toll-like receptor 2 signaling. Neuro-Oncology. 2015;17(2):200–10. https://doi.org/10.1093/neuonc/nou324.
Hughes GR. Heparin, antiphospholipid antibodies and the brain. Lupus. 2012;21(10):1039–40. https://doi.org/10.1177/0961203312451336.
Hunyadi A, Gaal B, Matesz C, Meszar Z, Morawski M, Reimann K, et al. Distribution and classification of the extracellular matrix in the olfactory bulb. Brain Struct Funct. 2020;225(1):321–44. https://doi.org/10.1007/s00429-019-02010-8.
Ichijo H, Kawabata I. Roles of the telencephalic cells and their chondroitin sulfate proteoglycans in delimiting an anterior border of the retinal pathway. J Neurosci. 2001;21(23):9304–14. https://doi.org/10.1523/JNEUROSCI.21-23-09304.2001.
Ida M, Shuo T, Hirano K, Tokita Y, Nakanishi K, Matsui F, et al. Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J Biol Chem. 2006;281(9):5982–91. https://doi.org/10.1074/jbc.M507130200.
Iida J, Wilhelmson KL, Ng J, Lee P, Morrison C, Tam E, et al. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem J. 2007;403(3):553–63. https://doi.org/10.1042/BJ20061176.
Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol. 2014;35:180–8. https://doi.org/10.1016/j.semcdb.2014.07.012.
Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science. 2003;302(5647):1044–6. https://doi.org/10.1126/science.1090497.
Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med. 2011;15(5):1013–31. https://doi.org/10.1111/j.1582-4934.2010.01236.x.
Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864–75. https://doi.org/10.1111/j.1742-4658.2010.07797.x.
Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55. https://doi.org/10.1016/j.matbio.2015.02.003.
Irie F, Yamaguchi Y. EPHB receptor signaling in dendritic spine development. Front Biosci. 2004;9:1365–73. https://doi.org/10.2741/1325.
Irie F, Badie-Mahdavi H, Yamaguchi Y. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proc Natl Acad Sci U S A. 2012;109(13):5052–6. https://doi.org/10.1073/pnas.1117881109.
Iseki K, Hagino S, Zhang Y, Mori T, Sato N, Yokoya S, et al. Altered expression pattern of testican-1 mRNA after brain injury. Biomed Res. 2011;32(6):373–8. https://doi.org/10.2220/biomedres.32.373.
Iseki K, Hagino S, Nikaido T, Zhang Y, Mori T, Yokoya S, et al. Gliosis-specific transcription factor OASIS coincides with proteoglycan core protein genes in the glial scar and inhibits neurite outgrowth. Biomed Res. 2012;33(6):345–53. https://doi.org/10.2220/biomedres.33.345.
Ishii M, Maeda N. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum. Glycobiology. 2008;18:602–14. https://doi.org/10.1093/glycob/cwn040.
Izumikawa T, Kitagawa H. Mice deficient in glucuronyltransferase-I. Prog Mol Biol Transl Sci. 2010;93:19–34. https://doi.org/10.1016/S1877-1173(10)93002-0.
Izumikawa T, Okuura Y, Koike T, Sakoda N, Kitagawa H. Chondroitin 4-O-sulfotransferase-1 regulates the chain length of chondroitin sulfate in co-operation with chondroitin N-acetylgalactosaminyltransferase-2. Biochem J. 2011;434(2):321–31. https://doi.org/10.1042/BJ20101456.
Izumikawa T, Saigoh K, Shimizu J, Tsuji S, Kusunoki S, Kitagawa H. A chondroitin synthase-1 (ChSy-1) missense mutation in a patient with neuropathy impairs the elongation of chondroitin sulfate chains initiated by chondroitin N-acetylgalactosaminyltransferase-1. Biochim Biophys Acta. 2013;1830:4806–12. https://doi.org/10.1016/j.bbagen.2013.06.017.
Jaworski DM, Kelly GM, Hockfield S. The CNS-specific hyaluronan-binding protein BEHAB is expressed in ventricular zones coincident with gliogenesis. J Neurosci. 1995;15(2):1352–62.
Jen Y-HL, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 2009;4:33. https://doi.org/10.1186/1749-8104-4-33.
Jiang GL, Yang XL, Zhou HJ, Long J, Liu B, Zhang LM, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Brain Res Bull. 2021;171:183–95. https://doi.org/10.1016/j.brainresbull.2021.03.010.
Jin J, Tilve S, Huang Z, Zhou L, Geller HM, Yu P. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture. Neural Regen Res. 2018;13(2):289–97. https://doi.org/10.4103/1673-5374.226398.
Jin M, Shiwaku H, Tanaka H, Obita T, Ohuchi S, Yoshioka Y, et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat Commun. 2021;12(1):6565. https://doi.org/10.1038/s41467-021-26851-2.
Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron. 2006;49(4):517–31. https://doi.org/10.1016/j.neuron.2006.01.026.
Johnstone KD, Karoli T, Liu L, Dredge K, Copeman E, Li CP, et al. Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. J Med Chem. 2010;53(4):1686–99. https://doi.org/10.1021/jm901449m.
Kalus I, Rohn S, Puvirajesinghe TM, Guimond SE, Eyckerman-Kolln PJ, Ten Dam G, et al. Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS One. 2015;10(10):e0139853. https://doi.org/10.1371/journal.pone.0139853.
Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron. 2004;44(6):961–75. https://doi.org/10.1016/j.neuron.2004.12.002.
Karumbaiah L, Anand S, Thazhath R, Zhong Y, McKeon RJ, Bellamkonda RV. Targeted downregulation of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase significantly mitigates chondroitin sulfate proteoglycan-mediated inhibition. Glia. 2011;59(6):981–96. https://doi.org/10.1002/glia.21170.
Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med. 2020;12(1):34. https://doi.org/10.1186/s13073-020-00733-6.
Kawashima H, Atarashi K, Hirose M, Hirose J, Yamada S, Sugahara K, et al. Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J Biol Chem. 2002;277(15):12921–30. https://doi.org/10.1074/jbc.M200396200.
Kearns AE, Vertel BM, Schwartz NB. Topography of glycosylation and UDP-xylose production. J Biol Chem. 1993;268(15):11097–104.
Khattar NK, Bak E, White AC, James RF. Heparin treatment in aneurysmal subarachnoid hemorrhage: a review of human studies. Acta Neurochir Suppl. 2020;127:15–9. https://doi.org/10.1007/978-3-030-04615-6_3.
Kim MJ, Cotman SL, Halfter W, Cole GJ. The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. J Neurobiol. 2003;55(3):261–77. https://doi.org/10.1002/neu.10213.
Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6. https://doi.org/10.1038/nature07623.
Klaver DW, Wilce MC, Gasperini R, Freeman C, Juliano JP, Parish C, et al. Glycosaminoglycan-induced activation of the beta-secretase (BACE1) of Alzheimer’s disease. J Neurochem. 2010;112(6):1552–61. https://doi.org/10.1111/j.1471-4159.2010.06571.x.
Knelson EH, Gaviglio AL, Tewari AK, Armstrong MB, Mythreye K, Blobe GC. Type III TGF-beta receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma. J Clin Invest. 2013;123(11):4786–98. https://doi.org/10.1172/JCI69657.
Knelson EH, Gaviglio AL, Nee JC, Starr MD, Nixon AB, Marcus SG, et al. Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth. J Clin Invest. 2014;124(7):3016–31. https://doi.org/10.1172/JCI74270.
Koike T, Izumikawa T, Tamura J, Kitagawa H. FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem J. 2009;421(2):157–62. https://doi.org/10.1042/BJ20090474.
Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289(5485):1754–7. https://doi.org/10.1126/science.289.5485.1754.
Kopke DL, Leahy SN, Vita DJ, Lima SC, Newman ZL, Broadie K. Carrier of wingless (Cow) regulation of drosophila neuromuscular junction development. eNeuro. 2020;7(2). https://doi.org/10.1523/ENEURO.0285-19.2020.
Kraushaar DC, Dalton S, Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem. 2013;394(6):741–51. https://doi.org/10.1515/hsz-2012-0353.
Kreuger J, Kjellen L. Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem. 2012;60(12):898–907. https://doi.org/10.1369/0022155412464972.
Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC Jr, Deyrup A, et al. A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc Natl Acad Sci U S A. 1998;95(15):8681–5. https://doi.org/10.1073/pnas.95.15.8681.
Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, Hoogewerf AJ, et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry. 1999;38(39):12959–68.
Lafont F, Rouget M, Triller A, Prochiantz A, Rousselet A. In vitro control of neuronal polarity by glycosaminoglycans. Development. 1992;114(1):17–29.
Lau E, Margolis RU. Inhibitors of slit protein interactions with the heparan sulphate proteoglycan glypican-1: potential agents for the treatment of spinal cord injury. Clin Exp Pharmacol Physiol. 2010;37(4):417–21. https://doi.org/10.1111/j.1440-1681.2009.05318.x.
Lee H, Leamey CA, Sawatari A. Rapid reversal of chondroitin sulfate proteoglycan associated staining in subcompartments of mouse neostriatum during the emergence of behaviour. PLoS One. 2008;3(8):e3020. https://doi.org/10.1371/journal.pone.0003020.
Lehman TJ, Miller N, Norquist B, Underhill L, Keutzer J. Diagnosis of the mucopolysaccharidoses. Rheumatology. 2011;50(Suppl 5):v41–8. https://doi.org/10.1093/rheumatology/ker390.
Lehri-Boufala S, Ouidja MO, Barbier-Chassefiere V, Henault E, Raisman-Vozari R, Garrigue-Antar L, et al. New roles of glycosaminoglycans in alpha-synuclein aggregation in a cellular model of Parkinson disease. PLoS One. 2015;10(1):e0116641. https://doi.org/10.1371/journal.pone.0116641.
Leveugle B, Ding W, Durkin JT, Mistretta S, Eisle J, Matic M, et al. Heparin promotes beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Neurochem Int. 1997;30(6):543–8.
Li H, Deyrup A, Mensch J, Domowicz M, Konstantinidis A, Schwartz NB. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase -adenosine 5′-phosphosulfate kinase. J Biol Chem. 1995;270:29453–9.
Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem. 2003;278(31):28363–6. https://doi.org/10.1074/jbc.C300219200.
Li Y, Laue K, Temtamy S, Aglan M, Kotan LD, Yigit G, et al. Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am J Hum Genet. 2010;87(6):757–67. https://doi.org/10.1016/j.ajhg.2010.10.003.
Li HP, Komuta Y, Kimura-Kuroda J, van Kuppevelt TH, Kawano H. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain. J Neurotrauma. 2013;30(5):413–25. https://doi.org/10.1089/neu.2012.2513.
Li H, Horns F, Wu B, Xie Q, Li J, Li T, et al. Classifying drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell. 2017a;171(5):1206–20. e22. https://doi.org/10.1016/j.cell.2017.10.019.
Li N, Fu H, Hewitt SM, Dimitrov DS, Ho M. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A. 2017b;114(32):E6623–E31. https://doi.org/10.1073/pnas.1706055114.
Li X, Zhu J, Liu K, Hu Y, Huang K, Pan S. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice. Exp Neurol. 2020;330:113320. https://doi.org/10.1016/j.expneurol.2020.113320.
Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63(5):499–509. https://doi.org/10.1093/jnen/63.5.499.
Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development. 2004;131(24):6009–21. https://doi.org/10.1242/dev.01522.
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JC. 6-Sulphated chondroitins have a positive influence on axonal regeneration. PLoS One. 2011;6(7):e21499. https://doi.org/10.1371/journal.pone.0021499.
Litwack ED, Ivins JK, Kumbasar A, Paine-Saunders S, Stipp CS, Lander AD. Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn. 1998;211(1):72–87. https://doi.org/10.1002/(SICI)1097-0177(199801)211:1<72::AID-AJA7>3.0.CO;2-4.
Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB, Lin PW, et al. Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol. 2009;50(5):958–68. https://doi.org/10.1016/j.jhep.2008.12.023.
Long KR, Huttner WB. How the extracellular matrix shapes neural development. Open Biol. 2019;9(1):180216. https://doi.org/10.1098/rsob.180216.
Long KR, Newland B, Florio M, Kalebic N, Langen B, Kolterer A, et al. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron. 2018;99(4):702–19. e6. https://doi.org/10.1016/j.neuron.2018.07.013.
Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 2015;66:49–63. https://doi.org/10.1146/annurev-med-011514-023121.
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.
Lyle S, Stanzack J, Ng K, Schwartz NB. Rat chondrosarcoma ATP sulfurylase and adenosine 5′-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry. 1994;33(19):5920–5.
Maeda N. Structural variation of chondroitin sulfate and its roles in the central nervous system. Cent Nerv Syst Agents Med Chem. 2010;10(1):22–31. https://doi.org/10.2174/187152410790780136.
Maeda N, Fukazawa N, Hata T. The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J Biol Chem. 2006;281(8):4894–902. https://doi.org/10.1074/jbc.M507750200.
Maeda N, Ishii M, Nishimura K, Kamimura K. Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem Res. 2011;36(7):1228–40. https://doi.org/10.1007/s11064-010-0324-y.
Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S, Hermanns-Le T, et al. Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat. 2010;31(11):1233–9. https://doi.org/10.1002/humu.21355.
Malla N, Berg E, Theocharis AD, Svineng G, Uhlin-Hansen L, Winberg JO. In vitro reconstitution of complexes between pro-matrix metalloproteinase-9 and the proteoglycans serglycin and versican. FEBS J. 2013;280(12):2870–87. https://doi.org/10.1111/febs.12291.
Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J, Silver J, et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci. 2006;26(16):4406–14. https://doi.org/10.1523/JNEUROSCI.5467-05.2006.
Masu M. Proteoglycans and axon guidance: a new relationship between old partners. J Neurochem. 2016;139(Suppl 2):58–75. https://doi.org/10.1111/jnc.13508.
Matsumoto Y, Irie F, Inatani M, Tessier-Lavigne M, Yamaguchi Y. Netrin-1/DCC signaling in commissural axon guidance requires cell-autonomous expression of heparan sulfate. J Neurosci. 2007;27(16):4342–50. https://doi.org/10.1523/JNEUROSCI.0700-07.2007.
McBride KL, Flanigan KM. Update in the mucopolysaccharidoses. Semin Pediatr Neurol. 2021;37:100874. https://doi.org/10.1016/j.spen.2021.100874.
McCanney GA, McGrath MA, Otto TD, Burchmore R, Yates EA, Bavington CD, et al. Low sulfated heparins target multiple proteins for central nervous system repair. Glia. 2019;67(4):668–87. https://doi.org/10.1002/glia.23562.
McKillop WM, Dragan M, Schedl A, Brown A. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia. 2013;61(2):164–77. https://doi.org/10.1002/glia.22424.
McLaughlin D, Karlsson F, Tian N, Pratt T, Bullock SL, Wilson VA, et al. Specific modification of heparan sulphate is required for normal cerebral cortical development. Mech Dev. 2003;120(12):1481–8. https://doi.org/10.1016/j.mod.2003.08.008.
McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT. Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci. 2007;27(20):5405–13. https://doi.org/10.1523/JNEUROSCI.5425-06.2007.
Mellai M, Casalone C, Corona C, Crociara P, Favole A, Cassoni P, et al. Chondroitin sulphate proteoglycans in the tumour microenvironment. Adv Exp Med Biol. 2020;1272:73–92. https://doi.org/10.1007/978-3-030-48457-6_5.
Mencio CP, Hussein RK, Yu P, Geller HM. The role of chondroitin sulfate proteoglycans in nervous system development. J Histochem Cytochem. 2021;69(1):61–80. https://doi.org/10.1369/0022155420959147.
Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet. 1998;18(2):136–41. https://doi.org/10.1038/ng0298-136.
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta. 2013;1830(10):4719–33. https://doi.org/10.1016/j.bbagen.2013.06.006.
Mikami T, Yasunaga D, Kitagawa H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem. 2009;284(7):4494–9. https://doi.org/10.1074/jbc.M809227200.
Miquel-Serra L, Serra M, Hernandez D, Domenzain C, Docampo MJ, Rabanal RM, et al. V3 versican isoform expression has a dual role in human melanoma tumor growth and metastasis. Lab Investig. 2006;86(9):889–901. https://doi.org/10.1038/labinvest.3700449.
Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A, Nagashima Y, et al. Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat. 2010;31(8):966–74. https://doi.org/10.1002/humu.21300.
Mizumoto S, Yamada S. Congenital disorders of deficiency in glycosaminoglycan biosynthesis. Front Genet. 2021;12:717535. https://doi.org/10.3389/fgene.2021.717535.
Mizumoto S, Mikami T, Yasunaga D, Kobayashi N, Yamauchi H, Miyake A, et al. Chondroitin 4-O-sulfotransferase-1 is required for somitic muscle development and motor axon guidance in zebrafish. Biochem J. 2009;419(2):387–99. https://doi.org/10.1042/BJ20081639.
Mizumoto S, Fongmoon D, Sugahara K. Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines. Glycoconj J. 2013a;30(6):619–32. https://doi.org/10.1007/s10719-012-9463-5.
Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem. 2013b;288(16):10953–61. https://doi.org/10.1074/jbc.R112.437038.
Mizumoto S, Yamada S, Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Curr Opin Struct Biol. 2015;34:35–42. https://doi.org/10.1016/j.sbi.2015.06.004.
Mohamedi Y, Fontanil T, Cobo T, Cal S, Obaya AJ. New insights into ADAMTS metalloproteases in the central nervous system. Biomolecules. 2020;10(3):403. https://doi.org/10.3390/biom10030403.
Moon LD, Asher RA, Rhodes KE, Fawcett JW. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci. 2001;4(5):465–6. https://doi.org/10.1038/87415.
Muhleisen TW, Mattheisen M, Strohmaier J, Degenhardt F, Priebe L, Schultz CC, et al. Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophr Res. 2012;138(1):69–73. https://doi.org/10.1016/j.schres.2012.03.007.
Mutalik SP, Gupton SL. Glycosylation in axonal guidance. Int J Mol Sci. 2021;22(10):5143. https://doi.org/10.3390/ijms22105143.
Mycroft-West CJ, Devlin AJ, Cooper LC, Procter P, Miller GJ, Fernig DG, et al. Inhibition of BACE1, the beta-secretase implicated in Alzheimer’s disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regen Res. 2020;15(8):1546–53. https://doi.org/10.4103/1673-5374.274341.
Mycroft-West CJ, Devlin AJ, Cooper LC, Guimond SE, Procter P, Guerrini M, et al. Glycosaminoglycans from litopenaeus vannamei inhibit the Alzheimer’s disease beta secretase, BACE1. Mar Drugs. 2021;19(4):203. https://doi.org/10.3390/md19040203.
Nakamura R, Nakamura F, Fukunaga S. Diverse functions of perlecan in central nervous system cells in vitro. Anim Sci J. 2015;86(10):904–11. https://doi.org/10.1111/asj.12376.
Nandini CD, Itoh N, Sugahara K. Novel 70-kDa chondroitin sulfate/dermatan sulfate hybrid chains with a unique heterogeneous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J Biol Chem. 2005;280(6):4058–69. https://doi.org/10.1074/jbc.M412074200.
Nishimura K, Ishii M, Kuraoka M, Kamimura K, Maeda N. Opposing functions of chondroitin sulfate and heparan sulfate during early neuronal polarization. Neuroscience. 2010;169(4):1535–47. https://doi.org/10.1016/j.neuroscience.2010.06.027.
Noborn F, Gomez Toledo A, Green A, Nasir W, Sihlbom C, Nilsson J, et al. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci Rep. 2016;6:34537. https://doi.org/10.1038/srep34537.
Ohtake S, Ito Y, Fukuta M, Habuchi O. Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene. J Biol Chem. 2001;276(47):43894–900. https://doi.org/10.1074/jbc.M104922200.
Oikari LE, Okolicsanyi RK, Qin A, Yu C, Griffiths LR, Haupt LM. Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination. Stem Cell Res. 2016;16(1):92–104. https://doi.org/10.1016/j.scr.2015.12.011.
Oohira A, Matsui F, Katoh-Semba R. Inhibitory effect of brain chondroitin sulphate proteoglycans on neurite outgrowth from PC12D cells. J Neurosci. 1991;11:822–7.
Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O. Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci. 2012;32(50):18009–17, 17a. https://doi.org/10.1523/JNEUROSCI.2406-12.2012.
Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays. 2000;22(2):108–12. https://doi.org/10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M.
Oyagi A, Hara H. Essential roles of heparin-binding epidermal growth factor-like growth factor in the brain. CNS Neurosci Ther. 2012;18(10):803–10. https://doi.org/10.1111/j.1755-5949.2012.00371.x.
Pantazopoulos H, Markota M, Jaquet F, Ghosh D, Wallin A, Santos A, et al. Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry. 2015;5:e496. https://doi.org/10.1038/tp.2014.128.
Park JB, Kwak HJ, Lee SH. Role of hyaluronan in glioma invasion. Cell Adhes Migr. 2008;2(3):202–7. https://doi.org/10.4161/cam.2.3.6320.
Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC, et al. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci U S A. 2007;104(26):11062–7. https://doi.org/10.1073/pnas.0609621104.
Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell. 2017;171(3):522–39. e20. https://doi.org/10.1016/j.cell.2017.08.032.
Perez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer A, et al. Semaphorin 3A-glycosaminoglycans interaction as therapeutic target for axonal regeneration. Pharmaceuticals (Basel). 2021;14(9):906. https://doi.org/10.3390/ph14090906.
Persson A, Nilsson J, Vorontsov E, Noborn F, Larson G. Identification of a non-canonical chondroitin sulfate linkage region trisaccharide. Glycobiology. 2019;29(5):366–71. https://doi.org/10.1093/glycob/cwz014.
Petersen F, Bock L, Flad HD, Brandt E. A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation. J Immunol. 1998;161(8):4347–55.
Phillips JJ. Novel therapeutic targets in the brain tumor microenvironment. Oncotarget. 2012;3(5):568–75. https://doi.org/10.18632/oncotarget.493.
Pierzynowska K, Gaffke L, Podlacha M, Brokowska J, Wegrzyn G. Mucopolysaccharidosis and autophagy: controversies on the contribution of the process to the pathogenesis and possible therapeutic applications. NeuroMolecular Med. 2020;22(1):25–30. https://doi.org/10.1007/s12017-019-08559-1.
Pinter A, Hevesi Z, Zahola P, Alpar A, Hanics J. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal. 2020;74:109710. https://doi.org/10.1016/j.cellsig.2020.109710.
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–51. https://doi.org/10.1126/science.1072699.
Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L. Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A. 2006;103(22):8517–22. https://doi.org/10.1073/pnas.0602657103.
Politko MO, Tsidulko AY, Pashkovskaya OA, Kuper KE, Suhovskih AV, Kazanskaya GM, et al. Multiple irradiation affects cellular and extracellular components of the mouse brain tissue and adhesion and proliferation of glioblastoma cells in experimental system in vivo. Int J Mol Sci. 2021;22(24). https://doi.org/10.3390/ijms222413350.
Pratt T, Conway CD, Tian NM, Price DJ, Mason JO. Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci. 2006;26(26):6911–23. https://doi.org/10.1523/JNEUROSCI.0505-06.2006.
Preston M, Sherman LS. Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci. 2011;3:1165–79. https://doi.org/10.2741/218.
Properzi F, Lin R, Kwok J, Naidu M, van Kuppevelt TH, Ten Dam GB, et al. Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur J Neurosci. 2008;27(3):593–604. https://doi.org/10.1111/j.1460-9568.2008.06042.x.
Qin A, Musket A, Musich PR, Schweitzer JB, Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: do signaling pathways matter? Neurooncol Adv. 2021;3(1):vdab133. https://doi.org/10.1093/noajnl/vdab133.
Ra HJ, Harju-Baker S, Zhang F, Linhardt RJ, Wilson CL, Parks WC. Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem. 2009;284(41):27924–32. https://doi.org/10.1074/jbc.M109.035147.
Rauch U, Kappler J. Chondroitin/Dermatan sulfates in the central nervous system: their structures and functions in health and disease. Adv Pharmacol. 2006;53:337–56. https://doi.org/10.1016/S1054-3589(05)53016-3.
Rauch U, Zhou XH, Roos G. Extracellular matrix alterations in brains lacking four of its components. Biochem Biophys Res Commun. 2005;328(2):608–17. https://doi.org/10.1016/j.bbrc.2005.01.026.
Raulo E, Tumova S, Pavlov I, Pekkanen M, Hienola A, Klankki E, et al. The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and regulate neurite extension and plasticity in hippocampal neurons. J Biol Chem. 2005;280(50):41576–83. https://doi.org/10.1074/jbc.M506457200.
Reig G, Pulgar E, Concha ML. Cell migration: from tissue culture to embryos. Development. 2014;141(10):1999–2013. https://doi.org/10.1242/dev.101451.
Reizes O, Lincecum J, Wang Z, Goldberger O, Huang L, Kaksonen M, et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell. 2001;106(1):105–16. https://doi.org/10.1016/s0092-8674(01)00415-9.
Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 2008;5(8):e171. https://doi.org/10.1371/journal.pmed.0050171.
Romberg C, Yang S, Melani R, Andrews MR, Horner AE, Spillantini MG, et al. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci. 2013;33(16):7057–65. https://doi.org/10.1523/JNEUROSCI.6267-11.2013.
Rost S, Akyuz N, Martinovic T, Huckhagel T, Jakovcevski I, Schachner M. Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury. Neuroscience. 2016;312:74–85. https://doi.org/10.1016/j.neuroscience.2015.11.013.
Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial-cell specification. Nature. 2010;468(7321):214–22. https://doi.org/10.1038/nature09611.
Rowlands D, Lensjo KK, Dinh T, Yang S, Andrews MR, Hafting T, et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci. 2018;38(47):10102–13. https://doi.org/10.1523/JNEUROSCI.1122-18.2018.
Saigoh K, Izumikawa T, Koike T, Shimizu J, Kitagawa H, Kusunoki S. Chondroitin beta-1,4-N-acetylgalactosaminyltransferase-1 missense mutations are associated with neuropathies. J Hum Genet. 2011;56(2):143–6. https://doi.org/10.1038/jhg.2010.148.
Sakurai T, Friedlander DR, Grumet M. Expression of polypeptide variants of receptor-type protein tyrosine phosphatase beta: the secreted form, phosphacan, increases dramatically during embryonic development and modulates glial cell behavior in vitro. J Neurosci Res. 1996;43(6):694–706. https://doi.org/10.1002/(SICI)1097-4547(19960315)43:6<694::AID-JNR6>3.0.CO;2-9.
Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev Biol. 1997;190(1):78–93. https://doi.org/10.1006/dbio.1997.8690.
Schimmelmann BG, Hinney A, Scherag A, Putter C, Pechlivanis S, Cichon S, et al. Bipolar disorder risk alleles in children with ADHD. J Neural Transm (Vienna). 2013;120(11):1611–7. https://doi.org/10.1007/s00702-013-1035-8.
Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR. Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci. 2000;113(Pt 5):807–16.
Schultz CC, Muhleisen TW, Nenadic I, Koch K, Wagner G, Schachtzabel C, et al. Common variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. Psychol Med. 2014;44(4):811–20. https://doi.org/10.1017/S0033291713001414.
Schwartz NB. Biosynthesis and regulation of expression of proteoglycans. Front Biosci. 2000;5:D649–55. https://doi.org/10.2741/a540.
Schwartz NB. PAPS synthetase. In: Encyclopedia of molecular medicine, vol. 1. New York: J. Wiley and Sons; 2002. p. 284–7.
Schwartz NB. PAPS and sulfoconjugation. In: Coughtrie MW, Pacifici GM, editors. Human cytosolic sulfotransferases. London: Taylor and Francis Group; 2005. p. 43–60.
Schwartz NB. Proteoglycans. In: Ltd. JWS, editor. Encyclopedia of life sciences. http://www.els.net. Chichester; 2009.
Schwartz NB. Special pathways and glycoconjugates. In: Devlin TM, editor. Textbook of biochemistry. 7th ed. New York: Wiley Liss; 2010. p. 647–73.
Schwartz NB, Domowicz MS. Proteoglycans in brain development and pathogenesis. FEBS Lett. 2018;592(23):3791–805. https://doi.org/10.1002/1873-3468.13026.
Schwartz NB, Domowicz MS. Roles of chondroitin sulfate proteoglycans as regulators of skeletal development. Front Cell Dev Biol. 2022;10:745372. https://doi.org/10.3389/fcell.2022.745372
Schwartz NB, Lyle S, Ozeran JD, Li H, Deyrup A, Ng K, et al. Sulfate activation and transport in mammals: system components and mechanisms. Chem- Biol Interact. 1998;109:143–51.
Scranton TW, Iwata M, Carlson SS. The SV2 protein of synaptic vesicles is a keratan sulfate proteoglycan. J Neurochem. 1993;61(1):29–44. https://doi.org/10.1111/j.1471-4159.1993.tb03535.x.
Shah A, Lodge DJ. A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia. Transl Psychiatry. 2013;3:e215. https://doi.org/10.1038/tp.2012.145.
Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science. 2009;326(5952):592–6. https://doi.org/10.1126/science.1178310.
Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA, et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry. 2011;16(2):193–201. https://doi.org/10.1038/mp.2009.124.
Shimazaki Y, Nagata I, Ishii M, Tanaka M, Marunouchi T, Hata T, et al. Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells. J Neurosci Res. 2005;82(2):172–83. https://doi.org/10.1002/jnr.20639.
Shipp EL, Hsieh-Wilson LC. Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem Biol. 2007;14(2):195–208. https://doi.org/10.1016/j.chembiol.2006.12.009.
Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci U S A. 1999;96(18):10361–6. https://doi.org/10.1073/pnas.96.18.10361.
Shriver Z, Capila I, Venkataraman G, Sasisekharan R. Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb Exp Pharmacol. 2012;207:159–76. https://doi.org/10.1007/978-3-642-23056-1_8.
Siddiqui TJ, Tari PK, Connor SA, Zhang P, Dobie FA, She K, et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron. 2013;79(4):680–95. https://doi.org/10.1016/j.neuron.2013.06.029.
Silbert JE, Sugumaran G. Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life. 2002;54(4):177–86. https://doi.org/10.1080/15216540214923.
Sirko S, von Holst A, Wizenmann A, Gotz M, Faissner A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development. 2007;134(15):2727–38. https://doi.org/10.1242/dev.02871.
Sirko S, Akita K, Von Holst A, Faissner A. Structural and functional analysis of chondroitin sulfate proteoglycans in the neural stem cell niche. Methods Enzymol. 2010a;479:37–71. https://doi.org/10.1016/S0076-6879(10)79003-0.
Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Gotz M, et al. Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells. 2010b;28(4):775–87. https://doi.org/10.1002/stem.309.
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, et al. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci. 2015;35(10):4190–202. https://doi.org/10.1523/JNEUROSCI.3592-14.2015.
Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20(6):810–7. https://doi.org/10.1016/j.ccr.2011.11.005.
Snyder SE, Li J, Schauwecker PE, McNeill TH, Salton SR. Comparison of RPTP zeta/beta, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTP zeta/beta and phosphacan mRNA following brain injury. Brain Res Mol Brain Res. 1996;40(1):79–96.
Srivastava T, Sherman LS, Back SA. Dysregulation of hyaluronan homeostasis during White matter injury. Neurochem Res. 2020;45(3):672–83. https://doi.org/10.1007/s11064-019-02879-1.
Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol. 2018;71–72:432–42. https://doi.org/10.1016/j.matbio.2018.04.010.
Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90. https://doi.org/10.1126/science.1142946.
Struve J, Maher PC, Li YQ, Kinney S, Fehlings MG, Kuntz C, et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia. 2005;52(1):16–24. https://doi.org/10.1002/glia.20215.
Su Z, Kishida S, Tsubota S, Sakamoto K, Cao D, Kiyonari S, et al. Neurocan, an extracellular chondroitin sulfate proteoglycan, stimulates neuroblastoma cells to promote malignant phenotypes. Oncotarget. 2017;8(63):106296–310. https://doi.org/10.18632/oncotarget.22435.
Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol. 2000;10(5):518–27. https://doi.org/10.1016/s0959-440x(00)00125-1.
Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40. https://doi.org/10.1016/j.ccr.2011.08.011.
Sugitani K, Egorova D, Mizumoto S, Nishio S, Yamada S, Kitagawa H, et al. Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. Biochim Biophys Acta Gen Subj. 2021;1865(2):129804. https://doi.org/10.1016/j.bbagen.2020.129804.
Svendsen A, Verhoeff JJ, Immervoll H, Brogger JC, Kmiecik J, Poli A, et al. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathol. 2011;122(4):495–510. https://doi.org/10.1007/s00401-011-0867-2.
Sweeney MD, Yu Y, Leary JA. Effects of sulfate position on heparin octasaccharide binding to CCL2 examined by tandem mass spectrometry. J Am Soc Mass Spectrom. 2006;17(8):1114–9. https://doi.org/10.1016/j.jasms.2006.04.025.
Takahashi N, Sakurai T, Bozdagi-Gunal O, Dorr NP, Moy J, Krug L, et al. Increased expression of receptor phosphotyrosine phosphatase-beta/zeta is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl Psychiatry. 2011;1:e8. https://doi.org/10.1038/tp.2011.8.
Takeda-Uchimura Y, Uchimura K, Sugimura T, Yanagawa Y, Kawasaki T, Komatsu Y, et al. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex. Exp Neurol. 2015;274:145–55. https://doi.org/10.1016/j.expneurol.2015.08.005.
Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19(2):335–46. https://doi.org/10.1038/nn.4216.
Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274(5290):1123–33. https://doi.org/10.1126/science.274.5290.1123.
Tham M, Ramasamy S, Gan HT, Ramachandran A, Poonepalli A, Yu YH, et al. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One. 2010;5(12):e15341. https://doi.org/10.1371/journal.pone.0015341.
Thelin MA, Bartolini B, Axelsson J, Gustafsson R, Tykesson E, Pera E, et al. Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J. 2013;280(10):2431–46. https://doi.org/10.1111/febs.12214.
Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277(19):3904–23. https://doi.org/10.1111/j.1742-4658.2010.07800.x.
Tian J, Ling L, Shboul M, Lee H, O’Connor B, Merriman B, et al. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet. 2010;87(6):768–78. https://doi.org/10.1016/j.ajhg.2010.11.005.
Tillo M, Charoy C, Schwarz Q, Maden CH, Davidson K, Fantin A, et al. 2- and 6-O-sulfated proteoglycans have distinct and complementary roles in cranial axon guidance and motor neuron migration. Development. 2016;143(11):1907–13. https://doi.org/10.1242/dev.126854.
Tom VJ, Kadakia R, Santi L, Houle JD. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J Neurotrauma. 2009;26(12):2323–33. https://doi.org/10.1089/neu.2009.1047.
Tone Y, Pedersen LC, Yamamoto T, Izumikawa T, Kitagawa H, Nishihara J, et al. 2-o-phosphorylation of xylose and 6-o-sulfation of galactose in the protein linkage region of glycosaminoglycans influence the glucuronyltransferase-I activity involved in the linkage region synthesis. J Biol Chem. 2008;283(24):16801–7. https://doi.org/10.1074/jbc.M709556200.
Tovar AM, de Mattos DA, Stelling MP, Sarcinelli-Luz BS, Nazareth RA, Mourao PA. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta. 2005;1740(1):45–53. https://doi.org/10.1016/j.bbadis.2005.02.008.
Troeberg L, Lazenbatt C, Anower EKMF, Freeman C, Federov O, Habuchi H, et al. Sulfated glycosaminoglycans control the extracellular trafficking and the activity of the metalloprotease inhibitor TIMP-3. Chem Biol. 2014;21(10):1300–9. https://doi.org/10.1016/j.chembiol.2014.07.014.
Tsidulko AY, Kazanskaya GM, Kostromskaya DV, Aidagulova SV, Kiselev RS, Volkov AM, et al. Prognostic relevance of NG2/CSPG4, CD44 and Ki-67 in patients with glioblastoma. Tumour Biol. 2017;39(9):1010428317724282. https://doi.org/10.1177/1010428317724282.
Tsidulko AY, Bezier C, de La Bourdonnaye G, Suhovskih AV, Pankova TM, Kazanskaya GM, et al. Conventional anti-glioblastoma chemotherapy affects proteoglycan composition of brain extracellular matrix in rat experimental model in vivo. Front Pharmacol. 2018;9:1104. https://doi.org/10.3389/fphar.2018.01104.
Tsidulko AY, Kazanskaya GM, Volkov AM, Suhovskih AV, Kiselev RS, Kobozev VV, et al. Chondroitin sulfate content and decorin expression in glioblastoma are associated with proliferative activity of glioma cells and disease prognosis. Cell Tissue Res. 2020;379(1):147–55. https://doi.org/10.1007/s00441-019-03127-2.
Tsidulko AY, Shevelev OB, Khotskina AS, Kolpakova MA, Suhovskih AV, Kazanskaya GM, et al. Chemotherapy-induced degradation of glycosylated components of the brain extracellular matrix promotes glioblastoma relapse development in an animal model. Front Oncol. 2021;11:713139. https://doi.org/10.3389/fonc.2021.713139.
Uchimura K, Kadomatsu K, Nishimura H, Muramatsu H, Nakamura E, Kurosawa N, et al. Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J Biol Chem. 2002;277(2):1443–50. https://doi.org/10.1074/jbc.M104719200.
Ughrin YM, Chen ZJ, Levine JM. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci. 2003;23(1):175–86. https://doi.org/10.1523/JNEUROSCI.23-01-00175.2003.
Uyama T, Kitagawa K, Sugahara H. Biosynthesis of glycosaminoglycans and proteoglycans. In: Kamerling JP, editor. Comprehensive glycoscience, vol. 3. Amsterdam: Elsevier; 2007. p. 79–104.
van Horssen J, Wesseling P, van den Heuvel LP, de Waal RM, Verbeek MM. Heparan sulphate proteoglycans in Alzheimer’s disease and amyloid-related disorders. Lancet Neurol. 2003;2(8):482–92. https://doi.org/10.1016/s1474-4422(03)00484-8.
Vegh MJ, Heldring CM, Kamphuis W, Hijazi S, Timmerman AJ, Li KW, et al. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:76. https://doi.org/10.1186/s40478-014-0076-z.
Vertel BM, Walters LM, Flay N, Kearns AE, Schwartz NB. Xylosylation is an endoplasmic reticulum to Golgi event. J Biol Chem. 1993;268(15):11105–12.
Vitale D, Kumar Katakam S, Greve B, Jang B, Oh ES, Alaniz L, et al. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J. 2019;286(15):2870–82. https://doi.org/10.1111/febs.14967.
Vo T, Carulli D, Ehlert EM, Kwok JC, Dick G, Mecollari V, et al. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci. 2013;56C:186–200. https://doi.org/10.1016/j.mcn.2013.04.009.
Volpi N. Dermatan sulfate: Recent structural and activity data. Carbohyd Polym. 2010;82(2):233–9. https://doi.org/10.1016/j.carbpol.2010.05.009.
Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. Proteoglycans and their roles in brain cancer. FEBS J. 2013;280(10):2399–417. https://doi.org/10.1111/febs.12109.
Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012;349(1):147–60. https://doi.org/10.1007/s00441-012-1375-y.
Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459(7246):528–33. https://doi.org/10.1038/nature07999.
Wang Q, Yang L, Alexander C, Temple S. The niche factor syndecan-1 regulates the maintenance and proliferation of neural progenitor cells during mammalian cortical development. PLoS One. 2012;7(8):e42883. https://doi.org/10.1371/journal.pone.0042883.
Wang M, Liu X, Lyu Z, Gu H, Li D, Chen H. Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B Biointerfaces. 2017;150:175–82. https://doi.org/10.1016/j.colsurfb.2016.11.022.
Wang L, Liu W, Li X, Xiao X, Li L, Liu F, et al. Further evidence of an association between NCAN rs1064395 and bipolar disorder. Mol Neuropsychiatry. 2018;4(1):30–4. https://doi.org/10.1159/000488590.
Wegrzyn G, Jakobkiewicz-Banecka J, Narajczyk M, Wisniewski A, Piotrowska E, Gabig-Ciminska M, et al. Why are behaviors of children suffering from various neuronopathic types of mucopolysaccharidoses different? Med Hypotheses. 2010;75(6):605–9. https://doi.org/10.1016/j.mehy.2010.07.044.
Wen J, Xiao J, Rahdar M, Choudhury BP, Cui J, Taylor GS, et al. Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc Natl Acad Sci U S A. 2014;111(44):15723–8. https://doi.org/10.1073/pnas.1417993111.
Winberg JO, Berg E, Kolset SO, Uhlin-Hansen L. Calcium-induced activation and truncation of promatrix metalloproteinase-9 linked to the core protein of chondroitin sulfate proteoglycans. Eur J Biochem. 2003;270(19):3996–4007. https://doi.org/10.1046/j.1432-1033.2003.03788.x.
Winkler S, Stahl RC, Carey DJ, Bansal R. Syndecan-3 and perlecan are differentially expressed by progenitors and mature oligodendrocytes and accumulate in the extracellular matrix. J Neurosci Res. 2002;69(4):477–87. https://doi.org/10.1002/jnr.10311.
Witte H, Bradke F. Guidance of axons to targets in development and in disease. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy, vol. 1. 4th ed. Philadelphia: Elsevier; 2005. p. 447–81.
Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci. 2000;57(2):276–89. https://doi.org/10.1007/PL00000690.
Yamaguchi Y, Inatani M, Matsumoto Y, Ogawa J, Irie F. Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies. Prog Mol Biol Transl Sci. 2010;93:133–52. https://doi.org/10.1016/S1877-1173(10)93007-X.
Yan ZY, Wang SZ. Proteoglycans as therapeutic targets in brain cancer. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.01358.
Yang S, Cacquevel M, Saksida LM, Bussey TJ, Schneider BL, Aebischer P, et al. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp Neurol. 2015;265:48–58. https://doi.org/10.1016/j.expneurol.2014.11.013.
Yang S, Hilton S, Alves JN, Saksida LM, Bussey T, Matthews RT, et al. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiol Aging. 2017;59:197–209. https://doi.org/10.1016/j.neurobiolaging.2017.08.002.
Yang S, Gigout S, Molinaro A, Naito-Matsui Y, Hilton S, Foscarin S, et al. Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01208-9.
Ye Q, Miao QL. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex. Matrix Biol. 2013;32(6):352–63. https://doi.org/10.1016/j.matbio.2013.04.001.
Yu C, Griffiths LR, Haupt LM. Exploiting heparan sulfate proteoglycans in human neurogenesis-controlling lineage specification and fate. Front Integr Neurosci. 2017;11:28. https://doi.org/10.3389/fnint.2017.00028.
Yu P, Pearson CS, Geller HM. Flexible roles for proteoglycan sulfation and receptor Signaling. Trends Neurosci. 2018;41(1):47–61. https://doi.org/10.1016/j.tins.2017.10.005.
Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K, Huang-Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578(7793):166–71. https://doi.org/10.1038/s41586-020-1952-2.
Zhang H, Muramatsu T, Murase A, Yuasa S, Uchimura K, Kadomatsu K. N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology. 2006a;16(8):702–10. https://doi.org/10.1093/glycob/cwj115.
Zhang H, Uchimura K, Kadomatsu K. Brain keratan sulfate and glial scar formation. Ann N Y Acad Sci. 2006b;1086:81–90. https://doi.org/10.1196/annals.1377.014.
Zhang W, Sun F, Niu H, Wang Q, Duan J. Mechanistic insights into cellular immunity of chondroitin sulfate A and its zwitterionic N-deacetylated derivatives. Carbohydr Polym. 2015;123:331–8. https://doi.org/10.1016/j.carbpol.2015.01.059.
Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013.
Zhao RR, Andrews MR, Wang D, Warren P, Gullo M, Schnell L, et al. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci. 2013. https://doi.org/10.1111/ejn.12276.
Zhou H, Roy S, Cochran E, Zouaoui R, Chu CL, Duffner J, et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One. 2011;6(6):e21106. https://doi.org/10.1371/journal.pone.0021106.
Zou P, Zou K, Muramatsu H, Ichihara-Tanaka K, Habuchi O, Ohtake S, et al. Glycosaminoglycan structures required for strong binding to midkine, a heparin-binding growth factor. Glycobiology. 2003;13(1):35–42. https://doi.org/10.1093/glycob/cwg001.
Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol. 2002;176(1):221–8. https://doi.org/10.1006/exnr.2002.7922.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Schwartz, N.B., Domowicz, M.S. (2023). Chemistry and Function of Glycosaminoglycans in the Nervous System. In: Schengrund, CL., Yu, R.K. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-12390-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-12390-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12389-4
Online ISBN: 978-3-031-12390-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)