Skip to main content

Operational Decisions in Mobile Robot Automation

  • Chapter
  • First Online:
Mobile Robot Automation in Warehouses

Abstract

The tactical decisions provide a boundary for the operational decisions to be taken when running the warehouse on a day-to-day basis. Operational-level decisions could be altered in the short term. Their effect on the warehouse operations could be observed within the same month or even within the same day as they directly affect operations. Thus, warehouse managers can experiment (without jeopardising the ongoing operations) with their decisions to optimise the operational focus areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, A. S., Mohamed, T. A., & Hazem, M. (2018). Optimization of Warehouse Material Handling Parameters to Enhance the Efficiency of Automated Sorting and Storage Systems. 11(1), 2018.

    Google Scholar 

  • Bechtsis, D., Tsolakis, N., Vlachos, D., & Srai, J. S. (2018). Intelligent Autonomous Vehicles in digital supply chains: A framework for integrating innovations towards sustainable value networks. Journal of Cleaner Production, 181, 60–71. https://doi.org/10.1016/j.jclepro.2018.01.173

    Article  Google Scholar 

  • Bormann, R., de Brito, B. F., Lindermayr, J., Omainska, M., & Patel, M. (2019). Towards Automated Order Picking Robots for Warehouses and Retail. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11754 LNCS, 185–198. https://doi.org/10.1007/978-3-030-34995-0_18

  • Boysen, N., Briskorn, D., & Emde, S. (2017). Parts-to-picker based order processing in a rack-moving mobile robots environment. European Journal of Operational Research, 262(2), 550–562. https://doi.org/10.1016/j.ejor.2017.03.053

    Article  Google Scholar 

  • Chen, H., Wang, Q., Yu, M., Cao, J., & Sun, J. (2018). Path Planning for Multi-robot Systems in Intelligent Warehouse. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11226 LNCS, 148–159. https://doi.org/10.1007/978-3-030-02738-4_13

  • Claes, D., Oliehoek, F., Baier, H., & Tuyls, K. (2017). Decentralised Online Planning for Multi-Robot Warehouse Commissioning.

    Google Scholar 

  • Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405–419. https://doi.org/10.1007/s10845-011-0612-7

    Article  Google Scholar 

  • D’Emidio, M., & Khan, I. (2019). Collision-free allocation of temporally constrained tasks in multi-robot systems. Robotics and Autonomous Systems, 119, 151–172. https://doi.org/10.1016/j.robot.2019.07.002

    Article  Google Scholar 

  • De Koster, R. B. M., Le-Anh, T., & Van Der Meer, J. R. (2004). Testing and classifying vehicle dispatching rules in three real-world settings. Journal of Operations Management, 22(4 SPEC. ISS.), 369–386. https://doi.org/10.1016/j.jom.2004.05.006

    Article  Google Scholar 

  • Dewangan, R. K., Shukla, A., & Godfrey, W. W. (2017). Survey on prioritized multi robot path planning. In 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, ICSTM 2017 - Proceedings. https://doi.org/10.1109/ICSTM.2017.8089197

  • Digani, V., Hsieh, M. A., Sabattini, L., & Secchi, C. (2019). Coordination of multiple AGVs: a quadratic optimization method. Autonomous Robots, 43(3), 539–555. https://doi.org/10.1007/s10514-018-9730-9

    Article  Google Scholar 

  • Digani, V., Sabattini, L., & Secchi, C. (2016). A probabilistic Eulerian traffic model for the coordination of multiple AGVs in automatic warehouses. IEEE Robotics and Automation Letters, 1(1), 26–32. https://doi.org/10.1109/LRA.2015.2505646

    Article  Google Scholar 

  • Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2015). Ensemble Coordination Approach in Multi-AGV Systems Applied to Industrial Warehouses. IEEE Transactions on Automation Science and Engineering, 12(3), 922–934. https://doi.org/10.1109/TASE.2015.2446614

    Article  Google Scholar 

  • Dou, J., Chen, C., & Yang, P. (2015). Genetic Scheduling and Reinforcement Learning in Multirobot Systems for Intelligent Warehouses. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/597956

  • Draganjac, I., Miklic, D., Kovacic, Z., Vasiljevic, G., & Bogdan, S. (2016). Decentralized Control of Multi-AGV Systems in Autonomous Warehousing Applications. IEEE Transactions on Automation Science and Engineering, 13(4), 1433–1447. https://doi.org/10.1109/TASE.2016.2603781

    Article  Google Scholar 

  • Draganjac, I., Petrović, T., Miklić, D., Kovačić, Z., & Oršulić, J. (2020). Highly-scalable traffic management of autonomous industrial transportation systems. Robotics and Computer-Integrated Manufacturing, 63. https://doi.org/10.1016/j.rcim.2019.101915

  • Enright, J. J., & Wurman, P. R. (2011). Optimization and coordinated autonomy in mobile fulfillment systems. AAAI Workshop - Technical Report, WS-11-09, 33–38.

    Google Scholar 

  • Faisal, M., Hedjar, R., Al Sulaiman, M., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. International Journal of Advanced Robotic Systems, 10. https://doi.org/10.5772/54427

  • Fan, Z., Gu, C., Yin, X., Liu, C., & Huang, H. (2018). Time window based path planning of multi-AGVs in logistics center. Proceedings - 2017 10th International Symposium on Computational Intelligence and Design, ISCID 2017, 2, 161–166. https://doi.org/10.1109/ISCID.2017.40

  • Farinelli, A., Boscolo, N., Zanotto, E., & Pagello, E. (2017). Advanced approaches for multi-robot coordination in logistic scenarios. Robotics and Autonomous Systems, 90, 34–44. https://doi.org/10.1016/j.robot.2016.08.010

    Article  Google Scholar 

  • Fazlollahtabar, H., & Saidi-Mehrabad, M. (2013). Methodologies to Optimize Automated Guided Vehicle Scheduling and Routing Problems: A Review Study. Journal of Intelligent and Robotic Systems: Theory and Applications, 77(3–4), 525–545. https://doi.org/10.1007/s10846-013-0003-8

    Article  Google Scholar 

  • Feng, L., Qi, M., Hua, S., & Zhou, Q. (2019). Picking Station Location in Traditional and Flying-V Aisle Warehouses for Robotic Mobile Fulfillment System. In IEEE International Conference on Industrial Engineering and Engineering Management (Vols. 2019-Decem). https://doi.org/10.1109/IEEM.2018.8607301

  • Füßler, D., Boysen, N., & Stephan, K. (2019). Trolley line picking: storage assignment and order sequencing to increase picking performance. OR Spectrum, 41(4), 1087–1121. https://doi.org/10.1007/s00291-019-00566-9

    Article  Google Scholar 

  • Ghassemi, P., & Chowdhury, S. (2018). Decentralized task allocation in multi-robot systems via bipartite graph matching augmented with fuzzy clustering. In ASME.

    Google Scholar 

  • Gunady, M. K., Gomaa, W., & Takeuchi, I. (2014). Aggregate Reinforcement Learning for multi-agent territory division: The Hide-and-Seek game. Engineering Applications of Artificial Intelligence, 34, 122–136. https://doi.org/10.1016/j.engappai.2014.05.012

    Article  Google Scholar 

  • Haiming, L., Weidong, L., Mei, Z., & An, C. (2019). Algorithm of path planning based on time window for multiple mobile robots in warehousing system. In Chinese Control Conference, CCC (Vols. 2019-July). https://doi.org/10.23919/ChiCC.2019.8866325

  • He, Z., Aggarwal, V., & Nof, S. Y. (2018). Differentiated service policy in smart warehouse automation. International Journal of Production Research, 56(22), 6956–6970. https://doi.org/10.1080/00207543.2017.1421789

    Article  Google Scholar 

  • Hirayama, C., & Nagao, T. (2019). Dynamic path costs update method reflecting delivery tendencies for multi-agent delivery tasks. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 4361–4366. https://doi.org/10.1109/SMC.2019.8914509

  • Jin, X., Zhong, M., Quan, X., Li, S., & Zhang, H. (2016). Dynamic scheduling of mobile-robotic warehouse logistics system. In Chinese Control Conference, CCC (Vols. 2016-Augus). https://doi.org/10.1109/ChiCC.2016.7553799

  • Kamoshida, R., & Kazama, Y. (2017). Acquisition of Automated Guided Vehicle Route Planning Policy Using Deep Reinforcement Learning.

    Google Scholar 

  • Kattepur, A., Rath, H. K., Simha, A., & Mukherjee, A. (2018). Distributed optimization in multi-agent robotics for industry 4.0 warehouses. Proceedings of the ACM Symposium on Applied Computing, 808–815. https://doi.org/10.1145/3167132.3167221

  • Krnjak, A., Draganjac, I., Bogdan, S., Petrovic, T., Miklic, D., & Kovacic, Z. (2015). Decentralized control of free ranging AGVs in warehouse environments. In Proceedings - IEEE International Conference on Robotics and Automation (Vols. 2015-June, Issue June). https://doi.org/10.1109/ICRA.2015.7139465

  • Kumar, N. V., & Kumar, C. S. (2018). Development of collision free path planning algorithm for warehouse mobile robot. Procedia Computer Science, 133, 456–463. https://doi.org/10.1016/j.procs.2018.07.056

    Article  Google Scholar 

  • Lamballais, T., Roy, D., & De Koster, R. B. M. (2017). Estimating performance in a Robotic Mobile Fulfillment System. European Journal of Operational Research, 256(3), 976–990. https://doi.org/10.1016/j.ejor.2016.06.063

    Article  Google Scholar 

  • Lamballais, T., Roy, D., & De Koster, R. B. M. (2020). Inventory allocation in robotic mobile fulfillment systems. IISE Transactions, 52(1), 1–17. https://doi.org/10.1080/24725854.2018.1560517

  • Lau, H. Y. K., Wong, V. W. K., & Lee, I. S. K. (2007). Immunity-based autonomous guided vehicles control. Applied Soft Computing Journal, 7(1), 41–57. https://doi.org/10.1016/j.asoc.2005.02.003

    Article  Google Scholar 

  • Le-Anh, T., & De Koster, R. B. M. (2006). A review of design and control of automated guided vehicle systems. European Journal of Operational Research, 171(1), 1–23. https://doi.org/10.1016/j.ejor.2005.01.036

    Article  Google Scholar 

  • Le-Anh, T., De Koster, R. B. M., & Yu, Y. (2010). Performance evaluation of dynamic scheduling approaches in vehicle-based internal transport systems. International Journal of Production Research, 48(24), 7219–7242. https://doi.org/10.1080/00207540903443279

    Article  Google Scholar 

  • Lee, C. K. M., Keung, K. L., Ng, K. K. H., & Lai, D. C. P. (2019a). Simulation-based Multiple Automated Guided Vehicles Considering Charging and Collision-free Requirements in Automatic Warehouse. IEEE International Conference on Industrial Engineering and Engineering Management, 2019-Decem, 1376–1380. https://doi.org/10.1109/IEEM.2018.8607396

  • Lee, C., Lin, B., Ng, K. K. H., Lv, Y., & Tai, W. C. (2019b). Smart robotic mobile fulfillment system with dynamic conflict-free strategies considering cyber-physical integration. Advanced Engineering Informatics, 42. https://doi.org/10.1016/j.aei.2019.100998

  • Lee, C. W., Wong, W. P., Ignatius, J., Rahman, A., & Tseng, M. L. (2020). Winner determination problem in multiple automated guided vehicle considering cost and flexibility. Computers and Industrial Engineering, 142. https://doi.org/10.1016/j.cie.2020.106337

  • Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821–5841. https://doi.org/10.1080/00207543.2018.1552031

    Article  Google Scholar 

  • Li, M. P., Sankaran, P., Kuhl, M. E., Ptucha, R., Ganguly, A., & Kwasinski, A. (2019a). Task Selection by Autonomous Mobile Robots in A Warehouse Using Deep Reinforcement Learning. In Proceedings - Winter Simulation Conference (Vols. 2019-Decem). https://doi.org/10.1109/WSC40007.2019.9004792

  • Li, X., Zhang, C., Yang, W., & Qi, M. (2019b). Multi-AGVs conflict-free routing and dynamic dispatching strategies for automated warehouses. Lecture Notes in Electrical Engineering, 513, 277–286. https://doi.org/10.1007/978-981-13-1059-1_26

    Article  Google Scholar 

  • Li, Z., Barenji, A. V., Jiang, J., Zhong, R. Y., & Xu, G. (2020). A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand. Journal of Intelligent Manufacturing, 31(2), 469–480. https://doi.org/10.1007/s10845-018-1459-y

    Article  Google Scholar 

  • Li, Z. P., Zhang, J. L., Zhang, H. J., & Hua, G. W. (2017). Optimal selection of movable shelves under cargo-to-person picking mode. International Journal of Simulation Modelling, 16(1), 145–156. https://doi.org/10.2507/IJSIMM16(1)CO2

    Article  Google Scholar 

  • Lienert, T., Stigler, L., & Fottner, J. (2019). Failure-Handling Strategies For Mobile Robots In Automated Warehouses. ECMS 2019 Proceedings Edited by Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo Ficco, 199–205. https://doi.org/10.7148/2019-0199

  • Liu, Yiming, Chen, M., & Huang, H. (2019a). Multi-agent Pathfinding Based on Improved Cooperative A* in Kiva System. In 2019 5th International Conference on Control, Automation and Robotics, ICCAR 2019. https://doi.org/10.1109/ICCAR.2019.8813319

  • Liu, Yubang, Ji, S., Su, Z., & Guo, D. (2019b). Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226161

  • Liu, Z., Wang, H., Chen, W., & Liu, Y. H. (2018). Distributed pair-wised transportation planning with incidental deliveries for multiple mobile robots. In 2017 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2017 (Vols. 2017-July). https://doi.org/10.1109/RCAR.2017.8311859

  • Liu, Z., Zhou, S., Wang, H., Shen, Y., Li, H., & Liu, Y. H. (2019c). A hierarchical framework for coordinating large-scale robot networks. In Proceedings - IEEE International Conference on Robotics and Automation (Vols. 2019-May). https://doi.org/10.1109/ICRA.2019.8793719

  • Ly, G. B. (2019). Storage Assignment Policy and Route Planning of AGVS in Warehouse Optimization. In Proceedings of 2019 International Conference on System Science and Engineering, ICSSE 2019.

    Google Scholar 

  • Ma, H., & Koenig, S. (2016). Optimal Target Assignment and Path Finding for Teams of Agents. Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems.

    Google Scholar 

  • Ma, H., Kumar, T. K. S., Li, J., & Koenig, S. (2017). Lifelong multi-Agent path finding for online pickup and delivery tasks. Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2, 837–845.

    Google Scholar 

  • Ma, Y., Wang, H., Xie, Y., & Guo, M. (2014). Path planning for multiple mobile robots under double-warehouse. Information Sciences, 278, 357–379. https://doi.org/10.1016/j.ins.2014.03.058

  • Merschformann, M., Lamballais, T., De Koster, R. B. M., & Suhl, L. (2019). Decision rules for robotic mobile fulfillment systems. Operations Research Perspectives, 6. https://doi.org/10.1016/j.orp.2019.100128

  • Ng, M. K., Chong, Y. W., Ko, K. man, Park, Y. H., & Leau, Y. B. (2020). Adaptive path finding algorithm in dynamic environment for warehouse robot. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-04764-3

  • Ono, Y., & Ishigami, G. (2019). Routing Problem of Multiple Mobile Robots with Human Workers for Pickup and Dispatch Tasks in Warehouse. Proceedings of the 2019 IEEE/SICE International Symposium on System Integration, SII 2019, 176–181. https://doi.org/10.1109/SII.2019.8700428

  • Pagani, P., Colling, D., & Furmans, K. (2017). Neural Network-Based Genetic Job Assignment for Automated Guided Vehicles. Logistics Journal, 2017. https://doi.org/10.2195/lj_Proc_pagani_en_201710_01

  • Panda, M. R., Das, P. K., Dutta, S., & Pradhan, S. K. (2018). Optimal path planning for mobile robots using oppositional invasive weed optimization. Computational Intelligence, 34(4), 1072–1100. https://doi.org/10.1111/coin.12166

    Article  Google Scholar 

  • Papcun, P., Cabadaj, J., Kajati, E., Romero, D., Landryova, L., Vascak, J., & Zolotova, I. (2019). Augmented Reality for Humans-Robots Interaction in Dynamic Slotting “Chaotic Storage” Smart Warehouses. IFIP Advances in Information and Communication Technology, 566, 633–641. https://doi.org/10.1007/978-3-030-30000-5_77

  • Petković, T., Puljiz, D., Marković, I., & Hein, B. (2019). Human intention estimation based on hidden Markov model motion validation for safe flexible robotized warehouses. Robotics and Computer-Integrated Manufacturing, 57, 182–196. https://doi.org/10.1016/j.rcim.2018.11.004

    Article  Google Scholar 

  • Piccinelli, N., & Muradore, R. (2018). Hybrid Motion Planner Integrating Global Voronoi Diagrams and Local Velocity Obstacle Method. In 2018 European Control Conference, ECC 2018. https://doi.org/10.23919/ECC.2018.8550127

  • Polten, L., & Emde, S. (2020). Scheduling automated guided vehicles in very narrow aisle warehouses. Omega (United Kingdom). https://doi.org/10.1016/j.omega.2020.102204

  • Qi, M., Li, X., Yan, X., & Zhang, C. (2018). On the evaluation of AGVS-based warehouse operation performance. Simulation Modelling Practice and Theory, 87, 379–394. https://doi.org/10.1016/j.simpat.2018.07.015

    Article  Google Scholar 

  • Rivas, D., Jiménez-Jané, J., & Ribas-Xirgo, L. (2019). Auction Model for Transport Order Assignment in AGV Systems. Advances in Intelligent Systems and Computing, 855, 227–241. https://doi.org/10.1007/978-3-319-99885-5_16

    Article  Google Scholar 

  • Sabattini, L., Digani, V., Secchi, C., & Fantuzzi, C. (2017). Optimized simultaneous conflict-free task assignment and path planning for multi-AGV systems. In IEEE International Conference on Intelligent Robots and Systems (Vols. 2017-Septe). https://doi.org/10.1109/IROS.2017.8202278

  • Santos, J., Costa, P., Rocha, L., Vivaldini, K., Moreira, A. P., & Veiga, G. (2016). Validation of a time based routing algorithm using a realistic automatic warehouse scenario. Advances in Intelligent Systems and Computing, 418, 81–92. https://doi.org/10.1007/978-3-319-27149-1_7

    Article  Google Scholar 

  • Sarkar, C., & Agarwal, M. (2019). Cannot avoid penalty? Let’s minimize. In Proceedings - IEEE International Conference on Robotics and Automation (Vols. 2019-May). https://doi.org/10.1109/ICRA.2019.8794338

  • Sarkar, C., Paul, H. S., & Pal, A. (2018). A Scalable Multi-Robot Task Allocation Algorithm. In Proceedings - IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ICRA.2018.8460886

  • Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Satish Kumar, T. K., Koenig, S., & Choset, H. (2019). PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning. In IEEE Robotics and Automation Letters (Vol. 4, Issue 3). https://doi.org/10.1109/LRA.2019.2903261

  • Semwal, T., Jha, S. S., & Nair, S. B. (2018). On Ordering Multi-Robot Task Executions within a Cyber Physical System. ACM Transactions on Autonomous and Adaptive Systems, 12(4), 1–27. https://doi.org/10.1145/3124677

    Article  Google Scholar 

  • Singhal, A., Singh, H. V., Penumatsa, A., Bhatt, N., Ambwani, P., Kumar, S., & Sinha, R. (2018). An actor based architecture for multi-robot system with application to warehouse. IoPARTS 2018 - Proceedings of the 2018 International Workshop on Internet of People, Assistive Robots and ThingS, 13–18. https://doi.org/10.1145/3215525.3215530

  • Smolic-Rocak, N., Bogdan, S., Kovacic, Z., & Petrovic, T. (2010). Time windows based dynamic routing in multi-AGV systems. IEEE Transactions on Automation Science and Engineering, 7(1), 151–155. https://doi.org/10.1109/TASE.2009.2016350

    Article  Google Scholar 

  • Stern, R. (2019). Multi-agent path finding – an overview. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11866 LNAI, 96–115. https://doi.org/10.1007/978-3-030-33274-7_6

  • Tai, R., Wang, J., & Chen, W. (2019). A prioritized planning algorithm of trajectory coordination based on time windows for multiple AGVs with delay disturbance. Assembly Automation, 39(5), 753–768. https://doi.org/10.1108/AA-03-2019-0054

    Article  Google Scholar 

  • Tai, R., Wang, J., Tian, W., Chen, W., Wang, H., & Zhou, Y. (2018). A Time-Efficient Approach to Solve Conflicts and Deadlocks for Scheduling AGVs in Warehousing Applications. 2018 IEEE International Conference on Real-Time Computing and Robotics (RCAR), 166–171. https://doi.org/10.1109/RCAR.2018.8621773

  • Thanos, E., Wauters, T., & Vanden Berghe, G. (2019). Dispatch and conflict-free routing of capacitated vehicles with storage stack allocation. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2019.1595191

  • Tsang, K. F. E., Ni, Y., Wong, C. F. R., & Shi, L. (2018). A Novel Warehouse Multi-Robot Automation System with Semi-Complete and Computationally Efficient Path Planning and Adaptive Genetic Task Allocation Algorithms.

    Google Scholar 

  • Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709. https://doi.org/10.1016/j.ejor.2004.09.020

    Article  Google Scholar 

  • Vivaldini, K., Rocha, L. F., Becker, M., & Moreira, A. P. (2015). Comprehensive review of the dispatching, scheduling and routing of AGVs. Lecture Notes in Electrical Engineering, 321 LNEE, 505–514. https://doi.org/10.1007/978-3-319-10380-8_48

  • Vivaldini, K., Rocha, L. F., Martarelli, N. J., Becker, M., & Moreira, A. P. (2016). Integrated tasks assignment and routing for the estimation of the optimal number of AGVS. International Journal of Advanced Manufacturing Technology, 82(1–4), 719–736. https://doi.org/10.1007/s00170-015-7343-4

    Article  Google Scholar 

  • Wang, H., Chen, W., & Wang, J. (2019). Heterogeneous multi-agent routing strategy for robot-and-picker-to-good order fulfillment system. Advances in Intelligent Systems and Computing, 867, 237–249. https://doi.org/10.1007/978-3-030-01370-7_19

    Article  Google Scholar 

  • Wang, W., Wu, Y., Zheng, J., & Chi, C. (2020). A comprehensive framework for the design of modular robotic mobile fulfillment systems. IEEE Access, 8, 13259–13269. https://doi.org/10.1109/ACCESS.2020.2966403

    Article  Google Scholar 

  • Wei, C., & Ni, F. (2018). Tabu temporal difference learning for robot path planning in uncertain environments. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10965 LNAI, 123–134. https://doi.org/10.1007/978-3-319-96728-8_11

  • Weidinger, F., Boysen, N., & Briskorn, D. (2018). Storage assignment with rack-moving mobile robots in KIVA warehouses. Transportation Science, 52(6), 1479–1495. https://doi.org/10.1287/trsc.2018.0826

    Article  Google Scholar 

  • Wurman, P. R., DAndrea, R., & Mountz, M. (2008). Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses.

    Google Scholar 

  • Xing, L., Liu, Y., Li, H., Wu, C. C., Lin, W. C., & Chen, X. (2020). A novel tabu search algorithm for multi-AGV routing problem. Mathematics, 8(2). https://doi.org/10.3390/math8020279

  • Xu, J., Wang, J., & Chen, W. (2019). An efficient recharging task planning method for multi-robot autonomous recharging problem. In IEEE International Conference on Robotics and Biomimetics, ROBIO 2019. https://doi.org/10.1109/ROBIO49542.2019.8961439

  • Yan, X., Zhang, C., & Qi, M. (2017). Multi-AGVs Collision-Avoidance and Deadlock-Control for Item-to-Human Automated Warehouse. IEEE International Conference on Robotics and Biomimetics, ROBIO 2019.

    Google Scholar 

  • Yin, S., & Xin, J. (2019). Path planning of multiple AGVs using a time-space network model. In Proceedings - 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2019. https://doi.org/10.1109/YAC.2019.8787726

  • Yoshitake, H., Kamoshida, R., & Nagashima, Y. (2019). New Automated Guided Vehicle System Using Real-Time Holonic Scheduling for Warehouse Picking. IEEE Robotics and Automation Letters, 4(2), 1045–1052. https://doi.org/10.1109/LRA.2019.2894001

    Article  Google Scholar 

  • Yuan, R., Wang, H., & Li, J. (2019). The Pod Assignment Model and Algorithm in Robotic Mobile Fulfillment Systems. In Proceedings - IEEE International Conference on Service Operations and Logistics, and Informatics 2019, SOLI 2019. https://doi.org/10.1109/SOLI48380.2019.8955103

  • Zhang, J., Yang, F., & Weng, X. (2019a). A Building-Block-Based Genetic Algorithm for Solving the Robots Allocation Problem in a Robotic Mobile Fulfilment System. Mathematical Problems in Engineering, 2019, 1–15. https://doi.org/10.1155/2019/6153848

    Article  Google Scholar 

  • Zhang, Y., Li, L. L., Lin, H. C., Ma, Z., & Zhao, J. (2019b). Development of path planning approach using improved a-star algorithm in AGV system. Journal of Internet Technology, 20(3), 915–924. https://doi.org/10.3966/160792642019052003023

    Article  Google Scholar 

  • Zhang, Z., Guo, Q., Chen, J., & Yuan, P. (2018). Collision-Free Route Planning for Multiple AGVs in an Automated Warehouse Based on Collision Classification. IEEE Access, 6, 26022–26035. https://doi.org/10.1109/ACCESS.2018.2819199

    Article  Google Scholar 

  • Zou, B., Gong, Y. (Yale), Xu, X., & Yuan, Z. (2017). Assignment rules in robotic mobile fulfilment systems for online retailers. International Journal of Production Research, 55(20), 6175–6192. https://doi.org/10.1080/00207543.2017.1331050

  • Zou, B., Xu, X., Gong, Y. (Yale), & De Koster, R. B. M. (2018). Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system. European Journal of Operational Research, 267(2), 733–753. https://doi.org/10.1016/j.ejor.2017.12.008

  • Zou, Y., Zhang, D., & Qi, M. (2019). Order picking system optimization based on picker-robot collaboration. ACM International Conference Proceeding Series, 1–6. https://doi.org/10.1145/3364335.3364386

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yildirim, A., Reefke, H., Aktas, E. (2023). Operational Decisions in Mobile Robot Automation. In: Mobile Robot Automation in Warehouses. Palgrave Studies in Logistics and Supply Chain Management. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-12307-8_6

Download citation

Publish with us

Policies and ethics