Skip to main content

Fast Predictions of Lattice Energies by Continuous Isometry Invariants of Crystal Structures

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2021)

Abstract

Crystal Structure Prediction (CSP) aims to discover solid crystalline materials by optimizing periodic arrangements of atoms, ions or molecules. CSP takes weeks of supercomputer time because of slow energy minimizations for millions of simulated crystals. The lattice energy is a key physical property, which hints at thermodynamic stability of a crystal but has no simple analytic expression. Past machine learning approaches to predict the lattice energy used slow crystal descriptors depending on manually chosen parameters. The new area of Periodic Geometry offers much faster isometry invariants that are also continuous under perturbations of atoms. Our experiments on simulated crystals confirm that a small distance between the new invariants guarantees a small difference of energies. We compare several kernel methods for invariant-based predictions of energy and achieve the mean absolute error of less than 5 kJ/mole or 0.05 eV/atom on a dataset of 5679 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology. arXiv:2103.02749 (2021)

  2. Anosova, O., Kurlin, V.: An isometry classification of periodic point sets. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 229–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_16

    Chapter  Google Scholar 

  3. Behler, J.: Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134(7), 074106 (2011)

    Article  Google Scholar 

  4. Chisholm, J., Motherwell, S.: COMPACK: a program for identifying crystal structure similarity using distances. J. Appl. Crystallogr. 38(1), 228–231 (2005)

    Article  Google Scholar 

  5. Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: Proceedings of SoCG (2021)

    Google Scholar 

  6. Egorova, O., Hafizi, R., Woods, D.C., Day, G.M.: Multifidelity statistical machine learning for molecular crystal structure prediction. J. Phys. Chem. A 124(39), 8065–8078 (2020)

    Article  Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Gross, E., Dreizler, R.: Density Functional Theory, vol. 337. Springer, Heidelberg (2013)

    Google Scholar 

  9. KI Williams, C.: Gaussian Processes for Machine Learning. Taylor & Francis (2006)

    Google Scholar 

  10. Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Cryst. Res. Technol. 55(5), 1900197 (2020)

    Article  Google Scholar 

  11. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom. 18(6), 275–285 (2004)

    Article  Google Scholar 

  12. Niketic, S.R., Rasmussen, K.: The Consistent Force Field: A Documentation, vol. 3. Springer, Heidelberg (2012)

    Google Scholar 

  13. Oganov, A.: Modern Methods of Crystal Structure Prediction. Wiley, Hoboken (2011)

    Google Scholar 

  14. O’Searcoid, M.: Metric Spaces. Springer, Heidelberg (2006). https://doi.org/10.1007/978-1-84628-627-8

    Book  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pulido, A., et al.: Functional materials discovery using energy-structure maps. Nature 543, 657–664 (2017)

    Article  Google Scholar 

  17. Ropers, J.: Applying machine learning to geometric invariants of crystals (2021). https://github.com/JRopes/CrystalEnergyPrediction

  18. Sacchi, P., Lusi, M., Cruz-Cabeza, A.J., Nauha, E., Bernstein, J.: Same or different-that is the question: identification of crystal forms from crystal structure data. CrystEngComm 22(43), 7170–7185 (2020)

    Article  Google Scholar 

  19. Schütt, K., Glawe, H., Brockherde, F., Sanna, A., Müller, K.R., Gross, E.: How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89(20), 205118 (2014)

    Google Scholar 

  20. Smith, J., Isayev, O., Roitberg, A.: An extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017)

    Article  Google Scholar 

  21. Valle, M., Oganov, A.R.: Crystal fingerprint space-a novel paradigm for studying crystal-structure sets. Acta Crystallogr. A 66(5), 507–517 (2010)

    Article  Google Scholar 

  22. Wales, D.J.: Exploring energy landscapes. Annu. Rev. Phys. Chem. 69, 401–425 (2018)

    Article  Google Scholar 

  23. Ward, L., et al.: Including crystal structure attributes in machine learning models of formation energies via voronoi tessellations. Phys. Rev. B 96(2), 024104 (2017)

    Article  Google Scholar 

  24. Widdowson, D., Kurlin, V.: Pointwise distance distributions of periodic sets. https://arxiv.org/abs/2108.04798

  25. Widdowson, D., Mosca, M., Pulido, A., Kurlin, V., Cooper, A.: Average minimum distances of periodic point sets—foundational invariants for mapping all periodic crystals. MATCH Commun. Math. Comput. Chem. 87(3), 529–559 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by £3.5M EPSRC grant ‘Application-driven Topological Data Analysis’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ropers, J., Mosca, M.M., Anosova, O., Kurlin, V., Cooper, A.I. (2022). Fast Predictions of Lattice Energies by Continuous Isometry Invariants of Crystal Structures. In: Pozanenko, A., Stupnikov, S., Thalheim, B., Mendez, E., Kiselyova, N. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2021. Communications in Computer and Information Science, vol 1620. Springer, Cham. https://doi.org/10.1007/978-3-031-12285-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12285-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12284-2

  • Online ISBN: 978-3-031-12285-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics