Skip to main content

Malaria Blood Smears Object Detection Based on Convolutional DCGAN and CNN Deep Learning Architectures

  • Chapter
  • First Online:
Computer and Information Science (ICIS 2022)

Abstract

Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://air.ug/microscopy/.

References

  1. Y. Dong, Z. Jiang, H. Shen, W.D. Pan, Classification accuracies of malaria infected cells using deep convolutional neural networks based on decompressed images. SoutheastCon 2017, 1–6 (2017)

    Google Scholar 

  2. S. Shuleenda Devi, S. Alam Sheikh, R. Hussain Laskar, Erythrocyte features for malaria parasite detection in microscopic images of thin blood smear: a review. Int. J. Interact. Multimed. Artif. Intel. 4(2), 34 (2016). Available http://www.ijimai.org/journal/node/1442

  3. J.A. Quinn, R. Nakasi, P.K.B. Mugagga, P. Byanyima, W. Lubega, A. Andama, Deep convolutional neural networks for microscopy-based point of care diagnostics, in Machine Learning and Healthcare Conference (MLHC 2016), vol. 56 (2016). Available http://arxiv.org/abs/1608.02989

  4. S.P. Premaratne, N.D. Karunaweera, S. Fernando, A neural network architecture for automated recognition of intracellular malaria parasites in stained blood films (2006), pp. 4–7

    Google Scholar 

  5. K.E.D. Peñas, P.T. Rivera, P.C. Naval, Malaria parasite detection and species identification on thin blood smears using a convolutional neural network, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (2017), pp. 1–6

    Google Scholar 

  6. R. Sorgedrager, Automated malaria diagnosis using convolutional neural networks in an on-field setting The analysis of low quality smartphone based microscope images, Ph.D. dissertation (2018)

    Google Scholar 

  7. Z. Yan, Y. Zhan, S. Zhang, D. Metaxas, X.S. Zhou, Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition, 1st ed. (Elsevier Inc., 2017). Available http://dx.doi.org/10.1016/B978-0-12-810408-8.00006-7

  8. Y. Dong, Z. Jiang, H. Shen, W.D. Pan, Classification accuracies of malaria infected cells using deep convolutional neural networks based on decompressed images. SoutheastCon 2017, 1–6 (2017)

    Google Scholar 

  9. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks (2014), pp. 1–9. Available http://arxiv.org/abs/1406.2661

  10. A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (2015), pp. 1–16. Available http://arxiv.org/abs/1511.06434

  11. Z. Zhang, L. S. Ong, K. Fang, A. Matthew, J. Dauwels, M. Dao, H. Asada, Image classification of unlabeled malaria parasites in red blood cells, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2016), pp. 3981–3984. Available http://ieeexplore.ieee.org/document/7591599/

  12. N. Linder, R. Turkki, M. Walliander, A. Mårtensson, V. Diwan, E. Rahtu, M. Pietikäinen, M. Lundin, J. Lundin, A malaria diagnostic tool based on computer vision screening and visualization of plasmodium falciparum candidate areas in digitized blood smears. PLoS One 9(8), e104855 (2014)

    Article  Google Scholar 

  13. F.B. Tek, A.G. Dempster, I. Kale, Malaria parasite detection in peripheral blood images. in BMVC (2006), pp. 347–356

    Google Scholar 

  14. G. Díaz, F.A. González, E. Romero, A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J Biomed Inf 42(2), 296–307 (2009). Available http://dx.doi.org/10.1016/j.jbi.2008.11.005

  15. P. Rajpurkar, V. Polamreddi, A. Balakrishnan, Malaria likelihood prediction by effectively surveying households using deep reinforcement learning, no. Nips (2017). Available http://arxiv.org/abs/1711.09223

  16. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 1097–1105 (2012)

    Google Scholar 

  17. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition (2015), pp. 1–9

    Google Scholar 

  18. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556 (2014)

  19. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1, ser. NIPS’12. (Curran Associates Inc.,USA, 2012), pp. 1097–1105. Available http://dl.acm.org/citation.cfm?id=2999134.2999257

  21. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  22. G.E. Hinton, Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  23. V. Nair, G.E. Hinton, 3d object recognition with deep belief nets. Adv. Neural Inf. Process. Syst. (2009), pp. 1339–1347

    Google Scholar 

  24. J. Hung, A. Carpenter, Applying faster r-cnn for object detection on malaria images, in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2017), pp. 808–813

    Google Scholar 

  25. M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, G. Thoma, Image analysis and machine learning for detecting malaria. Transl. Res. 194, 36–55 (2018). Available https://doi.org/10.1016/j.trsl.2017.12.004

  26. Z. Liang, A. Powell, I. Ersoy, M. Poostchi, K. Silamut, K. Palaniappan, P. Guo, M. Hossain, A. Sameer, R. Maude, J. Huang, S. Jaeger, G. Thoma, CNN-based image analysis for malaria diagnosis, in Proceedings—2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016 (2017), pp. 493–496

    Google Scholar 

  27. G.P. Gopakumar, M. Swetha, G. Sai Siva, G.R. Sai Subrahmanyam, Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J. Biophoton. 11(3) (2018)

    Google Scholar 

  28. D. Bibin, M.S. Nair, P. Punitha, Malaria parasite detection from peripheral blood smear images using deep belief networks. IEEE Access 5, 9099–9108 (2017)

    Article  Google Scholar 

  29. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets. Adv. Neural Inf. Process. Syst. (2014), pp. 2672–2680

    Google Scholar 

  30. A. Vijayalakshmi, B. Rajesh Khanna, Deep learning approach to detect malaria from microscopic images, in Multimedia Tools and Applications (2019). Available https://doi.org/10.1007/s11042-019-7162-y

  31. M.-Y. Liu, O. Tuzel, Coupled generative adversarial networks, in NIPS, no. Nips (2016), pp. 469–477. Available http://arxiv.org/abs/1606.07536

  32. A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (2015), pp. 1–16. Available http://arxiv.org/abs/1511.06434

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alexandre Lobo Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gois, F.N.B. et al. (2023). Malaria Blood Smears Object Detection Based on Convolutional DCGAN and CNN Deep Learning Architectures. In: Lee, R. (eds) Computer and Information Science. ICIS 2022. Studies in Computational Intelligence, vol 1055. Springer, Cham. https://doi.org/10.1007/978-3-031-12127-2_14

Download citation

Publish with us

Policies and ethics