Skip to main content

Time Series Analysis

  • Chapter
  • First Online:
Epidemics

Part of the book series: Use R! ((USE R))

  • 1193 Accesses

Abstract

Analysis of epidemic time series is a large endeavor because of the richness of dynamical patterns and a plentitude of historical data (Rohani & King, 2010). A wide range of tools are used, some of which are borrowed from mainstream statistics and other of which are custom-made. The classic “mainstream” methods belong to two categories: the so-called time-domain and frequency-domain methods. The autocorrelation function and ARIMA models belong to the former class and spectral analysis , and the periodogram belongs to the latter. Hybrid time/frequency methods have become increasingly prominent in the form of wavelet analysis because it allows the study of changes in disease dynamics through time (Grenfell et al., 2001).

This chapter uses the following R packages: forecast, Rwave, imputeTS, nlts , and plotrix.

Five minute epidemic MOOC videos on seasonality and patterns of endemicity can be watched on YouTube:

Seasonality https://www.youtube.com/watch?v=TDuuM-wm6nw

Patterns of endemicity https://www.youtube.com/watch?v=Mf_EZm5amxI .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ARMA model is usually considered a purely statistical model (i.e., not containing biological mechanism), though it can be shown that for example the linearized discrete-time SIR model with stochastic transmission can be approximately mapped onto an ARMA(2,1) model (see Sect. 10.9). Bjørnstad et al. (2001) and Bjørnstad et al. (2004) provide additional examples of how ARMA processes arise from a variety of ecological interactions.

  2. 2.

    The first smallpox vaccines are dated to China in the fifteenth century (Plotkin, 2011). Thereafter, the diphteria toxoid vaccine developed in the 1920s was among the very first to be broadly administered (Relyveld, 2011).

References

  • Baker-Austin, C., Trinanes, J. A., Taylor, N. G., Hartnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 3(1), 73–77.

    Article  Google Scholar 

  • Becker, A. D., Wesolowski, A., Bjørnstad, O. N., & Grenfell, B. T. (2019). Long-term dynamics of measles in london: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLoS Computational Biology, 15(9), e1007305.

    Article  Google Scholar 

  • Bjørnstad, O. N., Nisbet, R. M., & Fromentin, J.-M. (2004). Trends and cohort resonant effects in age-structured populations. Journal of Animal Ecology, 73(6), 1157–1167.

    Article  Google Scholar 

  • Bjørnstad, O. N., Sait, S. M., Stenseth, N. C., Thompson, D. J., & Begon, M. (2001). The impact of specialized enemies on the dimensionality of host dynamics. Nature, 409(6823), 1001.

    Article  Google Scholar 

  • Choi, K., & Thacker, S. B. (1981). An evaluation of influenza mortality surveillance, 1962–1979: I. Time series forecasts of expected pneumonia and influenza deaths. American Journal of Epidemiology, 113(3), 215–226.

    Article  Google Scholar 

  • Dalziel, B. D., Bjørnstad, O. N., van Panhuis, W. G., Burke, D. S., Metcalf, C. J. E., & Grenfell, B. T. (2016). Persistent chaos of measles epidemics in the prevaccination United States caused by a small change in seasonal transmission Patterns. PLoS Computationmal Biology, 12(2), e1004655.

    Article  Google Scholar 

  • Dixon, M. G., Ferrari, M., Antoni, S., Li, X., Portnoy, A., Lambert, B., Hauryski, S., Hatcher, C., Nedelec, Y., Patel, M., et al. (2021). Progress toward regional measles elimination worldwide, 2000–2020. Morbidity and Mortality Weekly Report, 70(45), 1563.

    Article  Google Scholar 

  • Earn, D. J. D., Rohani, P., Bolker, B. M., & Grenfell, B. T. (2000b). A simple model for complex dynamical transitions in epidemics. Science, 287(5453), 667–670.

    Article  Google Scholar 

  • Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T., & Nychka, D. W. (1998). Noise and nonlinearity in measles epidemics: Combining mechanistic and statistical approaches to population modeling. The American Naturalist, 151(5), 425–440.

    Article  Google Scholar 

  • Grenfell, B. T., Bjørnstad, O. N., & Finkenstadt, B. F. (2002). Dynamics of measles epidemics: Scaling noise, determinism, and predictability with the TSIR model. Ecological Monographs, 72(2), 185–202.

    Article  Google Scholar 

  • Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–723.

    Article  Google Scholar 

  • Kooperberg, C., Stone, C. J., & Truong, Y. K. (1995). Logspline estimation of a possibly mixed spectral distribution. Journal of Time Series Analysis, 16(4), 359–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Legendre, L., Frechette, M., & Legendre, P. (1981). The contingency periodogram: A method of identifying rhythms in series of nonmetric ecological data. The Journal of Ecology, 69, 965–979.

    Article  Google Scholar 

  • Li, T.-Y., & Yorke, J. A. (2004). Period three implies chaos. In Hunt, B. R., Li, T.-Y., Kennedy, J. A., & Nusse, H. E., (Eds.), The theory of chaotic attractors (pp. 77–84). Springer.

    Google Scholar 

  • Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285(5426), 397–400.

    Article  Google Scholar 

  • Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2), 447–462.

    Article  Google Scholar 

  • Plotkin, S. A. (2011). History of vaccine development. Springer Science & Business Media.

    Google Scholar 

  • Priestley, M. B. (1981). Spectral analysis and time series. Academic press.

    MATH  Google Scholar 

  • Relyveld, E. H. (2011). A history of toxoids. In History of vaccine development (pp. 57–64). Springer.

    Google Scholar 

  • Rohani, P., & King, A. A. (2010). Never mind the length, feel the quality: The impact of long-term epidemiological data sets on theory, application and policy. Trends in Ecology and Evolution, 25(10), 611–618.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjørnstad, O. (2023). Time Series Analysis. In: Epidemics. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-031-12056-5_7

Download citation

Publish with us

Policies and ethics