Skip to main content

Seasonality

  • Chapter
  • First Online:
Epidemics

Part of the book series: Use R! ((USE R))

  • 1132 Accesses

Abstract

Host behavior and environmental factors influence disease dynamics in a variety of ways through affecting the pathogen such as the survival of infective stages outside the host and via host demographies from changing birth rates, carrying capacitities, social organization, etc. Sometimes such influences have relatively subtle consequences (e.g., slight changes in R 0) as is likely the effect of absolute humidity on influenza transmission (Lowen et al., 2007; Bjørnstad & Viboud, 2016).

The chapter uses the following R packages: deSolve and plotrix.

A five minute epidemics MOOC on seasonality can be seen on youtube:

https://www.youtube.com/watch?v=TDuuM-wm6nw .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    split creates a list from a vector and sapply applies a function to a list to return a new vector.

  2. 2.

    If the infection has a case fatality ratio of, say, 30%, the additional rate of removal is α = −log(1 − 0.3)∕ip, where ip is the duration of infection and the appropriate calculation would be R 0 = σβ∕(σ + μ)(γ + μ + α).

  3. 3.

    It is possible to analyze more realistic patterns of seasonality, such as a more explicit term-time forcing; see Keeling et al. (2001) and Chap. 8. The qualitative (but not detailed) results appear to be robust to the exact shape of the forcing function.

  4. 4.

    We discuss coexisting attractors in further detail in Sect. 11.4.

  5. 5.

    As for the nextgenR0 function introduced in Sect. 3.11, the internal syntax here involves quite a bit of acrobatics. Its construction involved a lot of trial and error on the authors part but it works.

References

  • Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9(4), 467–484.

    Article  Google Scholar 

  • Aron, J. L., & Schwartz, I. B. (1984). Seasonality and period-doubling bifurcations in an epidemic model. Journal of Theoretical Biology, 110(4), 665–679.

    Article  MathSciNet  Google Scholar 

  • Bauch, C. T., & Earn, D. J. D. (2003). Interepidemic intervals in forced and unforced SEIR models. Dynamical Systems and their Applications in Biology, 36, 33–44.

    MathSciNet  MATH  Google Scholar 

  • Bjørnstad, O. N., & Viboud, C. (2016). Timing and periodicity of influenza epidemics. Proceedings of the National Academy of Sciences, 201616052.

    Google Scholar 

  • Codeço, C. T. (2001). Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir. BMC Infectious Diseases 1.

    Google Scholar 

  • Dalziel, B. D., Bjørnstad, O. N., van Panhuis, W. G., Burke, D. S., Metcalf, C. J. E., & Grenfell, B. T. (2016). Persistent chaos of measles epidemics in the prevaccination United States caused by a small change in seasonal transmission Patterns. PLoS Computationmal Biology, 12(2), e1004655.

    Article  Google Scholar 

  • Dalziel, B. D., Kissler, S., Gog, J. R., Viboud, C., Bjørnstad, O. N., Metcalf, C. J. E., & Grenfell, B. T. (2018). Urbanization and humidity shape the intensity of influenza epidemics in US cities. Science, 362(6410), 75–79.

    Article  Google Scholar 

  • Earn, D. J. D., Rohani, P., Bolker, B. M., & Grenfell, B. T. (2000b). A simple model for complex dynamical transitions in epidemics. Science, 287(5453), 667–670.

    Article  Google Scholar 

  • Ferrari, M. J., Grais, R. F., Bharti, N., Conlan, A. J., Bjørnstad, O. N., Wolfson, L. J., Guerin, P. J., Djibo, A., & Grenfell, B. T. (2008). The dynamics of measles in sub-Saharan Africa. Nature, 451(7179), 679–684.

    Article  Google Scholar 

  • Fine, P. E. M., & Clarkson, J. A. (1982). Measles in England and Wales. I. An analysis of factors underlying seasonal patterns. International Journal of Epidemiology, 11, 5–15.

    Google Scholar 

  • Glass, G. E., Cheek, J. E., Patz, J. A., Shields, T. M., Doyle, T. J., Thoroughman, D. A., Hunt, D. K., Enscore, R. E., Gage, K. L., Irland, C., et al. (2000). Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerging Infectious Diseases, 6(3), 238.

    Article  Google Scholar 

  • Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M., & Wolff, J. O. (1998). Chain reactions linking acorns to gypsy moth outbreaks and lyme disease risk. Science, 279(5353), 1023–1026.

    Article  Google Scholar 

  • Keeling, M. J., Rohani, P., & Grenfell, B. T. (2001). Seasonally forced disease dynamics explored as switching between attractors. Physica D: Nonlinear Phenomena, 148(3), 317–335.

    Article  MATH  Google Scholar 

  • Kucharski, A. J., Conlan, A. J. K., & Eames, K. T. D. (2015). School’s out: Seasonal variation in the movement patterns of school children. PloS One, 10(6), e0128070.

    Article  Google Scholar 

  • London, W. P., & Yorke, J. A. (1973). Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates. American Journal of Epidemiology, 98(6), 453–468.

    Article  Google Scholar 

  • Lowen, A. C., Mubareka, S., Steel, J., & Palese, P. (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens, 3(10), e151.

    Article  Google Scholar 

  • Luis, A. D., Douglass, R. J., Mills, J. N., & Bjørnstad, O. N. (2015). Environmental fluctuations lead to predictability in Sin Nombre hantavirus outbreaks. Ecology, 96(6), 1691–1701.

    Article  Google Scholar 

  • Martinez-Bakker, M., Bakker, K. M., King, A. A., & Rohani, P. (2014). Human birth seasonality: Latitudinal gradient and interplay with childhood disease dynamics. Proceedings of the Royal Society of London B, 281(1783), 20132438.

    Google Scholar 

  • Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences, 107(2), 255–287.

    Article  MATH  Google Scholar 

  • Peel, A. J., Pulliam, J., Luis, A., Plowright, R., O’Shea, T., Hayman, D., Wood, J., Webb, C., & Restif, O. (2014). The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proceedings of the Royal Society of London B, 281(1786), 20132962.

    Google Scholar 

  • Pitzer, V. E., Viboud, C., Alonso, W. J., Wilcox, T., Metcalf, C. J., Steiner, C. A., Haynes, A. K., & Grenfell, B. T. (2015). Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States. PLoS Pathogens, 11(1), e1004591.

    Article  Google Scholar 

  • Rand, D. A., & Wilson, H. B. (1991). Chaotic stochasticity: A ubiquitous source of unpredictability in epidemics. Proceedings of the Royal Society of London B, 246(1316), 179–184.

    Article  Google Scholar 

  • Ruiz-Moreno, D., Pascual, M., Bouma, M., Dobson, A., & Cash, B. (2007). Cholera seasonality in Madras (1901–1940): Dual role for rainfall in endemic and epidemic regions. EcoHealth, 4(1), 52–62.

    Article  Google Scholar 

  • Schaffer, W. M. (1985). Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA Journal of Mathematics Applied in Medicine and Biology, 2(4), 221–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz, I. B. (1985). Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. Journal of Mathematical Biology, 21(3), 347–361.

    Article  MathSciNet  MATH  Google Scholar 

  • Shaman, J., & Kohn, M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243–3248.

    Article  Google Scholar 

  • Swinton, J., Harwood, J., Grenfell, B. T., & Gilligan, C. A. (1998). Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. Journal of Animal Ecology, 67, 54–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjørnstad, O. (2023). Seasonality. In: Epidemics. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-031-12056-5_6

Download citation

Publish with us

Policies and ethics