Skip to main content

Invasion and Eradication

  • Chapter
  • First Online:
Epidemics

Part of the book series: Use R! ((USE R))

  • 1123 Accesses

Abstract

Pathogens invade new host niches all the time. The global invasion of the human niche by SARS-CoV-2 during the 2020–22 pandemic is the most recent example, but cross-species transmission is ubiquitous. In 2009 Influenza A/H1N1pdm09 emerged and spread globally most likely after a triple recombination of human, avian, and porcine viral segments (Smith et al., 2009a). The HIV-1 pandemic started in the mid-twentieth century probably from bushmeat spillover of chimpanzee simian immunodeficiency virus, which itself is thought to have originated from spillovers from other primates, to go global in the 1970s (Hemelaar, 2012). Cross-species transmission is not just an issue of zoonotic spillover or anthropogenic spillback, it is equally important as spillover among animal species.

This chapter uses the following R packages: scatterplot3d, raster, gdistance, maptools, rgdal, maps and ncf.

A five minute epidemics MOOC on spatial spread can be seen on YouTube: https://www.youtube.com/watch?v=WPjsAdyD1Gg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A kin to the failure of persistence of measles in human communities below the critical community size (Bartlett, 1960b; Grenfell & Harwood, 1997, Sect. 1.3).

  2. 2.

    Engen et al. (2021) discuss an alternative diffusion approximation approach to study this issue.

  3. 3.

    Though there are Cetacean morbilliviruses documented from rare species of toothed whales which mode of persistence is not understood (Van Bressem et al., 2014).

  4. 4.

    Manipulation of geospatial data is an enormous field and the R community has generated a lot of resources beyond the scope of this text. The code is adopted from https://stackoverflow.com/questions/69258889.

  5. 5.

    Conventional usage is to use “eliminate” for regional control and “eradicate” for global control; smallpox and Rinderpest are the only two viruses that have been eradicated through vaccination.

  6. 6.

    https://tinyurl.com/msszkdjw links to visualization of the invasion and elimination of fox rabies across Switzerland between 1967 and 1999.

  7. 7.

    The code is actually vectorized so can accommodate N as a vector of varying population sizes.

  8. 8.

    So for this code to work the previous susceptible reconstruction must be available.

  9. 9.

    As described by watchmakers centuries ago who noted how clocks hanging on a common wall would lock-step.

References

  • Anderson, R. M., Jackson, H. C., May, R. M., & Smith, A. M. (1981). Population dynamics of fox rabies in Europe. Nature, 289(5800), 765–771.

    Article  Google Scholar 

  • Bailey, N. T. J. (1957). The mathematical theory of epidemics. London: Griffin.

    Google Scholar 

  • Bartlett, M. S. (1960a). Stochastic population models in ecology and epidemiology. Wiley.

    MATH  Google Scholar 

  • Bartlett, M. S. (1960b). The critical community size for measles in the U.S. Journal of Royal Statistical Society A, 123, 37–44.

    Article  Google Scholar 

  • Bjørnstad, O. N. (2000). Cycles and synchrony: Two historical ‘experiments’ and one experience. Journal of Animal Ecology, 869–873.

    Google Scholar 

  • Bjørnstad, O. N., Ims, R. A., & Lambin, X. (1999b). Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 14(11), 427–432.

    Article  Google Scholar 

  • Bjørnstad, O. N., Shea, K., Krzywinski, M., & Altman, N. (2020a). Modeling infectious epidemics. Nature Methods, 17(5), 455–456.

    Article  Google Scholar 

  • Blumberg, S., & Lloyd-Smith, J. O. (2013b). Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains. PLoS Computational Biology, 9(5), e1002993.

    Article  Google Scholar 

  • Engen, S., Tian, H., Yang, R., Bjørnstad, O. N., Whittington, J. D., & Stenseth, N. C. (2021). The ecological dynamics of the coronavirus epidemics during transmission from outside sources when R0 is successfully managed below one. Royal Society Open Science, 8(6), 202234.

    Article  Google Scholar 

  • Farrington, C. P., & Grant, A. D. (1999). The distribution of time to extinction in subcritical branching processes: Applications to outbreaks of infectious disease. Journal of Applied Probability, 36(3), 771–779.

    Article  MathSciNet  MATH  Google Scholar 

  • Farrington, C. P., Kanaan, M. N., & Gay, N. J. (2003). Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics, 4(2), 279–295.

    Article  MATH  Google Scholar 

  • Ferrari, M. J., Grais, R. F., Bharti, N., Conlan, A. J., Bjørnstad, O. N., Wolfson, L. J., Guerin, P. J., Djibo, A., & Grenfell, B. T. (2008). The dynamics of measles in sub-Saharan Africa. Nature, 451(7179), 679–684.

    Article  Google Scholar 

  • Freuling, C. M., Hampson, K., Selhorst, T., Schröder, R., Meslin, F. X., Mettenleiter, T. C., & Müller, T. (2013). The elimination of fox rabies from Europe: Determinants of success and lessons for the future. Philosophical Transactions of the Royal Society B, 368(1623), 20120142.

    Article  Google Scholar 

  • Goldstein, J., Park, J., Haran, M., Liebhold, A., & Bjørnstad, O. N. (2019). Quantifying spatio-temporal variation of invasion spread. Proceedings of the Royal Society B, 286(1894), 20182294.

    Article  Google Scholar 

  • Graham, M., Winter, A. K., Ferrari, M., Grenfell, B., Moss, W. J., Azman, A. S., Metcalf, C. J. E., & Lessler, J. (2019). Measles and the canonical path to elimination. Science, 364(6440), 584–587.

    Article  Google Scholar 

  • Grenfell, B., & Harwood, J. (1997). (meta)population dynamics of infectious diseases. Trends in Ecology and Evolution, 12(10), 395–399.

    Article  Google Scholar 

  • Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–723.

    Article  Google Scholar 

  • Hall, A. J., Jepson, P. D., Goodman, S. J., & Härkönen, T. (2006). Phocine distemper virus in the North and European seas—Data and models, nature and nurture. Biological Conservation, 131(2), 221–229.

    Article  Google Scholar 

  • Hammill, M. O., Stenson, G. B., Mosnier, A., & Doniol-Valcroz, T. (2021). Trends in Abundance of Harp Seals, Pagophilus Groenlandicus , in the Northwest Atlantic, 1952–2019. Canadian Science Advisory Secretariat.

    Google Scholar 

  • Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41–49.

    Article  Google Scholar 

  • Hanski, I. A., & Gaggiotti, O. E. (2004). Ecology, genetics and evolution of metapopulations. Academic Press.

    Google Scholar 

  • Harding, K. C., Härkönen, T., & Caswell, H. (2002). The 2002 European seal plague: Epidemiology and population consequences. Ecology Letters, 5(6), 727–732.

    Article  Google Scholar 

  • Hemelaar, J. (2012). The origin and diversity of the HIV-1 pandemic. Trends in Molecular Medicine, 18(3), 182–192.

    Article  Google Scholar 

  • Iacono, G. L., Cunningham, A. A., Fichet-Calvet, E., Garry, R. F., Grant, D. S., Khan, S. H., Leach, M., Moses, L. M., Schieffelin, J. S., Shaffer, J. G., et al. (2015). Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: The case of Lassa fever. PLoS Negl ectedTropical Diseases, 9(1), e3398.

    Article  Google Scholar 

  • Keeling, M. J., Bjørnstad, O. N., & Grenfell, B. T. (2004). Metapopulation dynamics of infectious diseases. In Hanski, I., & Gaggiotti, O., (Eds.), Ecology, Genetics, and Evolution of Metapopulations (pp. 415–445). Elsevier.

    Google Scholar 

  • Keeling, M. J., & Rohani, P. (2002). Estimating spatial coupling in epidemiological systems: A mechanistic approach. Ecology Letters, 5(1), 20–29.

    Article  Google Scholar 

  • Kendall, B. E., Bjørnstad, O. N., Bascompte, J., Keitt, T. H., & Fagan, W. F. (2000). Dispersal, environmental correlation, and spatial synchrony in population dynamics. The American Naturalist, 155(5), 628–636.

    Article  Google Scholar 

  • Klepac, P., Metcalf, C. J. E., McLean, A. R., & Hampson, K. (2013). Towards the endgame and beyond: Complexities and challenges for the elimination of infectious diseases. Philosophical transactions of the Royal Society B.

    Google Scholar 

  • Klepac, P., Pomeroy, L. W., Bjørnstad, O. N., Kuiken, T., Osterhaus, A. D., & Rijks, J. M. (2009). Stage-structured transmission of phocine distemper virus in the Dutch 2002 outbreak. Proceedings of the Royal Society B, 276(1666), 2469–2476.

    Article  Google Scholar 

  • Kröger, M., Turkyilmazoglu, M., & Schlickeiser, R. (2021). Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use? Physica D, 425, 132981.

    Google Scholar 

  • Lau, M. S. Y., Becker, A. D., Korevaar, H. M., Caudron, Q., Shaw, D. J., Metcalf, C. J. E., Bjørnstad, O. N., & Grenfell, B. T. (2020). A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination. Nature Ecology and Evolution, 4, 934–939.

    Article  Google Scholar 

  • Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., Hudson, P. J., & Grenfell, B. T. (2009). Epidemic dynamics at the human-animal interface. Science, 326(5958), 1362–1367.

    Article  Google Scholar 

  • Metcalf, C. J. E., Hampson, K., Tatem, A. J., Grenfell, B. T., & Bjørnstad, O. N. (2013). Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough. PloS One, 8(9), e74696.

    Article  Google Scholar 

  • Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences, 107(2), 255–287.

    Article  MATH  Google Scholar 

  • Murray, J. D., Stanley, E. A., & Brown, D. L. (1986). On the spatial spread of rabies among foxes. Proceedings of the Royal Society of London. Series B, 111–150.

    Google Scholar 

  • Reluga, T. C., Medlock, J., & Galvani, A. P. (2006). A model of spatial epidemic spread when individuals move within overlapping home ranges. Bulletin of Mathematical Biology, 68(2), 401–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Rohani, P., Earn, D. J., & Grenfell, B. T. (1999). Opposite patterns of synchrony in sympatric disease metapopulations. Science, 286(5441), 968–971.

    Article  Google Scholar 

  • Rohani, P., Keeling, M. J., & Grenfell, B. T. (2002). The interplay between determinism and stochasticity in childhood diseases. The American Naturalist, 159(5), 469–481.

    Article  Google Scholar 

  • Ruxton, G. D. (1994). Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proceedings of the Royal Society of London B, 256(1346), 189–193.

    Article  Google Scholar 

  • Scherer, A., & McLean, A. (2002). Mathematical models of vaccination. British Medical Bulletin, 62(1), 187–199.

    Article  Google Scholar 

  • Smith, D. L., Lucey, B., Waller, L. A., Childs, J. E., & Real, L. A. (2002a). Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proceedings of the National Academy of Sciences, 99(6), 3668–3672.

    Article  Google Scholar 

  • Smith, G. J., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J., Bhatt, S., et al. (2009a). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 459(7250), 1122–1125.

    Article  Google Scholar 

  • Special Commitee on Seals. (2002). Scientific advice on matters related to the management of seal populations. Technical report, Sea Mammal Research Unit, St Adrews University.

    Google Scholar 

  • Swinton, J. (1998). Extinction times and phase transitions for spatially structured closed epidemics. Bulletin of Mathematical Biology, 60(2), 215–230.

    Article  MATH  Google Scholar 

  • Swinton, J., Harwood, J., Grenfell, B. T., & Gilligan, C. A. (1998). Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. Journal of Animal Ecology, 67, 54–68.

    Article  Google Scholar 

  • Taber, S. W., & Pease, C. M. (1990). Paramyxovirus phylogeny: Tissue tropism evolves slower than host specificity. Evolution, 44(2), 435–438.

    Google Scholar 

  • Takahashi, S., Metcalf, C. J. E., Ferrari, M. J., Moss, W. J., Truelove, S. A., Tatem, A. J., Grenfell, B. T., & Lessler, J. (2015). Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science, 347(6227), 1240–1242.

    Article  Google Scholar 

  • Van Bressem, M.-F., Duignan, P. J., Banyard, A., Barbieri, M., Colegrove, K. M., De Guise, S., Di Guardo, G., Dobson, A., Domingo, M., Fauquier, D., et al. (2014). Cetacean morbillivirus: Current knowledge and future directions. Viruses, 6(12), 5145–5181.

    Article  Google Scholar 

  • van den Bosch, F., Metz, J. A. J., & Diekmann, O. (1990). The velocity of spatial population expansion. Journal of Mathematical Biology, 28(5), 529–565.

    Article  MathSciNet  MATH  Google Scholar 

  • Waller, L. A., & Gotway, C. A. (2004). Linking spatial sxposure data to health events. In Applied spatial statistics for public health data (pp. 325–443). John Wiley and Sons.

    Google Scholar 

  • Xia, Y., Bjørnstad, O. N., & Grenfell, B. T. (2004). Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics. The American Naturalist, 164(2), 267–281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjørnstad, O. (2023). Invasion and Eradication. In: Epidemics. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-031-12056-5_15

Download citation

Publish with us

Policies and ethics