Abstract
Accurate cell nuclei segmentation is necessary for subsequent histopathology image analysis, including tumour classification, grading and prognosis. Manually identifying cell nuclei is both difficult and time-consuming, with cell nuclei exhibiting dramatic differences in morphology and staining characteristics. Recently, significant advancements in automatic cell nuclei segmentation have been achieved using deep learning, with methods particularly successful in identifying cell nuclei from background tissue. However, delineating individual cell nuclei remains challenging, with often unclear boundaries between neighbouring nuclei. In this paper, we incorporate the FellWalker algorithm, originally developed for analysing molecular clouds, into a deep learning-based pipeline to perform instance cell nuclei segmentation. We evaluate our proposed method on the Lizard dataset, the largest publicly available nuclear segmentation dataset in digital pathology, and compare it against popular methods such as U-Net with Watershed and Mask R-CNN. Our proposed method consistently outperforms the other methods across dataset sizes, achieving an object Dice of 0.7876, F1 score of 0.8245 and Aggregated Jaccard Index of 0.6526. The flexible nature of our pipeline incorporating the FellWalker algorithm has the potential for broader application in biomedical image instance segmentation tasks.
Keywords
- Digital pathology
- Deep learning
- Image processing
- Instance segmentation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abdolhoseini, M., Kluge, M.G., Walker, F.R., Johnson, S.J.: Segmentation of heavily clustered nuclei from histopathological images. Sci. Rep. 9(1), 1–13 (2019)
Alsubaie, N., Sirinukunwattana, K., Raza, S.E.A., Snead, D., Rajpoot, N.: A bottom-up approach for tumour differentiation in whole slide images of lung adenocarcinoma. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810E. International Society for Optics and Photonics (2018)
Berg, S., et al.: Ilastik: interactive machine learning for (bio) image analysis. Nat. Methods 16(12), 1226–1232 (2019)
Berry, D.S.: Fellwalker - a clump identification algorithm. Astron. Comput. 10, 22–31 (2015)
Berry, D., Reinhold, K., Jenness, T., Economou, F.: Cupid: a clump identification and analysis package. In: Astronomical Data Analysis Software and Systems XVI, vol. 376, p. 425 (2007)
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)
Caicedo, J.C., et al.: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytometry A 95(9), 952–965 (2019)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chaurasia, A., Culurciello, E.: Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)
Graham, S., et al.: Conic: Colon nuclei identification and counting challenge 2022. arXiv preprint arXiv:2111.14485 (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Hollandi, R., Moshkov, N., Paavolainen, L., Tasnadi, E., Piccinini, F., Horvath, P.: Nucleus segmentation: towards automated solutions. Trends Cell Biol. (2022)
Hollandi, R., et al.: Nucleaizer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 10(5), 453–458 (2020)
Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2013)
Jung, H., Lodhi, B., Kang, J.: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed. Eng. 1(1), 1–12 (2019)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kornilov, A.S., Safonov, I.V.: An overview of watershed algorithm implementations in open source libraries. J. Imaging 4(10), 123 (2018)
Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)
Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Lu, C., et al.: A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study. Lancet Digit. Health 2(11), e594–e606 (2020)
Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)
Mahbod, A., Schaefer, G., Ellinger, I., Ecker, R., Smedby, Ö., Wang, C.: A two-stage U-net algorithm for segmentation of nuclei in H &E-stained tissues. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 75–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_9
Meyer, F., Maragos, P.: Multiscale morphological segmentations based on watershed, flooding, and Eikonal PDE. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 351–362. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_31
Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: PSI-net: shape and boundary aware joint multi-task deep network for medical image segmentation. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7223–7226. IEEE (2019)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Plissiti, M.E., Nikou, C., Charchanti, A.: Watershed-based segmentation of cell nuclei boundaries in pap smear images. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, pp. 1–4. IEEE (2010)
Robboy, S.J., et al.: Pathologist workforce in the united states: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137(12), 1723–1732 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30
Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GLAS challenge contest. Med. Image Anal. 35, 489–502 (2017)
Sirinukunwattana, K., Snead, D.R., Rajpoot, N.M.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34(11), 2366–2378 (2015)
Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)
Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019). https://doi.org/10.1016/j.compmedimag.2019.04.005
Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Vuola, A.O., Akram, S.U., Kannala, J.: Mask-RCNN and U-net ensembled for nuclei segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 208–212. IEEE (2019)
Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)
Yang, L., et al.: NuSet: a deep learning tool for reliably separating and analyzing crowded cells. PLoS Comput. Biol. 16(9), e1008193 (2020)
Yang, X., Li, H., Zhou, X.: Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE Trans. Circuits Syst. I Regul. Pap. 53(11), 2405–2414 (2006)
Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Unified Focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 95, 102026 (2022)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Acknowledgements
This work was funded in part by the UK Research and Innovation Future Leaders Fellowship [MR/V023799/1], in part by the Medical Research Council [MC/PC/21013], in part by the European Research Council Innovative Medicines Initiative [DRAGON, H2020-JTI-IMI2 101005122], and in part by the AI for Health Imaging Award [CHAIMELEON, H2020-SC1-FA-DTS2019-1 952172]. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yeung, M., Watts, T., Yang, G. (2022). From Astronomy to Histology: Adapting the FellWalker Algorithm to Deep Nuclear Instance Segmentation. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-12053-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12052-7
Online ISBN: 978-3-031-12053-4
eBook Packages: Computer ScienceComputer Science (R0)