Skip to main content

Optical Sources and Waveguides Based on Flexible 1D Nanomaterials

  • Chapter
  • First Online:
Advanced Nanomaterials

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

In recent years, flexible one-dimensional (1D) nanomaterials have attracted great attention in various research fields and applications, as they can be applied in optical components and efficiently generated and guided the light at the nanoscale. In this chapter, we reported plasmon-modulated nano-waveguide and ring resonator lasing with quantum dots in polymer nanowire system. For plasmonic nano-waveguides, when the polymer nanowires were doped with quantum dots and combined with gold nanorods, the light emission efficiency was increased by 67% at a wavelength of 600 nm. For the ring resonator lasing, the ring resonator was assembled from polymer nanowires with an optical loss coefficient of 70 cm−1, and a multimode laser emission with a modulus of 9 was obtained, with the wavelength distribution extending from 550 to 650 nm. These flexible 1D nanomaterials would have very great potential in the field of application of optical components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Wang, Y. Wang, L. Tong, Light: Sci. Appl. 2, e102 (2013)

    Google Scholar 

  2. X. Yang, Y. Liu, H. Lei, B. Li, Nanoscale 8, 15529 (2016)

    Article  CAS  Google Scholar 

  3. X. Yang, D. Bao, B. Li, RSC Adv. 5, 60770 (2015)

    Article  CAS  Google Scholar 

  4. X. Yang, Y. Li, Z. Lou, Q. Chen, B. Li, A.C.S. Appl, Energy Mater. 1, 278 (2018)

    CAS  Google Scholar 

  5. X. Yang, D. Bao, Y. Zhang, B. Li, ACS Photonics 3, 1256 (2016)

    Article  CAS  Google Scholar 

  6. X. Yang, B. Li, in Asia Communications and Photonics Conference (OSA, 2017), pp. Su2C.5

    Google Scholar 

  7. X. Yang, B. Li, in International Conference on Optical Instruments and Technology 2017, vol 10622, 10 (SPIE, 2018)

    Google Scholar 

  8. X. Yang, B. Li, in Plasmonics. ed. by T. Gric (IntechOpen, London, 2018), p. 21

    Google Scholar 

  9. A. Portone et al., Nanoscale 10, 21748 (2018)

    Article  CAS  Google Scholar 

  10. H. Yu, B. Li, Sci. Rep. 3, 1674 (2013)

    Article  Google Scholar 

  11. H. Yu, R. Zhang, B. Li, Nanotechnology 22, 335202 (2011)

    Article  Google Scholar 

  12. H. Liu, J.B. Edel, L.M. Bellan, H.G. Craighead, Small 2, 495 (2006)

    Article  CAS  Google Scholar 

  13. S. Mondal, U. Rana, S. Malik, Chem. Commun. 51, 12365 (2015)

    Article  CAS  Google Scholar 

  14. J.R. Lakowicz, Plasmonics 1, 5 (2006)

    Article  CAS  Google Scholar 

  15. J.R. Lakowicz et al., Analyst 133, 1308 (2008)

    Article  CAS  Google Scholar 

  16. Z. Yang et al., J. Phys. Chem. C 112, 18895 (2008)

    Article  CAS  Google Scholar 

  17. Y. Fu, J. Zhang, J.R. Lakowicz, J. Am. Chem. Soc. 132, 5540 (2010)

    Article  CAS  Google Scholar 

  18. Y. Fang, M. Sun, Light: Sci. Appl. 4, e294 (2015)

    CAS  Google Scholar 

  19. Y.S. Zhao, A. Peng, H. Fu, Y. Ma, J. Yao, Adv. Mater. 20, 1661 (2008)

    Article  CAS  Google Scholar 

  20. J. Clark, G. Lanzani, Nat. Photonics 4, 438 (2010)

    Article  CAS  Google Scholar 

  21. W. Yao et al., Angew. Chem. 125, 8875 (2013)

    Article  Google Scholar 

  22. F.S. Kim, G. Ren, S.A. Jenekhe, Chem. Mater. 23, 682 (2011)

    Article  CAS  Google Scholar 

  23. Q.H. Cui, Y.S. Zhao, J. Yao, Chem. Sci. 5, 52 (2014)

    Article  CAS  Google Scholar 

  24. G.A. O’Brien, A.J. Quinn, D.A. Tanner, G. Redmond, Adv. Mater. 18, 2379 (2006)

    Article  CAS  Google Scholar 

  25. V. Fasano et al., Macromolecules 46, 5935 (2013)

    Article  CAS  Google Scholar 

  26. D. O’Carroll, I. Lieberwirth, G. Redmond, Nat. Nanotechnol. 2, 180 (2007)

    Article  CAS  Google Scholar 

  27. A. Noy et al., Nano Lett. 2, 109 (2002)

    Article  CAS  Google Scholar 

  28. W. Liu, J. Wei, Y. Chen, P. Huo, Y. Wei, A.C.S. Appl, Mater. Interfaces 5, 680 (2013)

    Article  CAS  Google Scholar 

  29. X. Guo, Y. Ying, L. Tong, Acc. Chem. Res. 47, 656 (2014)

    Article  CAS  Google Scholar 

  30. Q. Song, L. Liu, L. Xu, J. Lightwave Technol. 27, 4374 (2009)

    Article  CAS  Google Scholar 

  31. M.T. Hill et al., Nature 432, 206 (2004)

    Article  CAS  Google Scholar 

  32. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, Opt. Express 16, 1062 (2008)

    Article  Google Scholar 

  33. M. Sumetsky, Y. Dulashko, R.S. Windeler, Opt. Lett. 35, 1866 (2010)

    Article  CAS  Google Scholar 

  34. Z. Li, Y. Zhang, Angew. Chem. 118, 7896 (2006)

    Article  Google Scholar 

  35. F. Di Stasio et al., Small 11, 1328 (2015)

    Article  Google Scholar 

  36. X. Yang, R. Xu, D. Bao, B. Li, A.C.S. Appl, Mater. Interfaces 6, 11846 (2014)

    Article  CAS  Google Scholar 

  37. R. Zhang, H. Yu, B. Li, Nanoscale 4, 5856 (2012)

    Article  CAS  Google Scholar 

  38. J.-H. Song, T. Atay, S. Shi, H. Urabe, A.V. Nurmikko, Nano Lett. 5, 1557 (2005)

    Article  CAS  Google Scholar 

  39. R. Bardhan, N.K. Grady, J.R. Cole, A. Joshi, N.J. Halas, ACS Nano 3, 744 (2009)

    Article  CAS  Google Scholar 

  40. K. Munechika et al., Nano Lett. 10, 2598 (2010)

    Article  CAS  Google Scholar 

  41. E. Cohen-Hoshen, G.W. Bryant, I. Pinkas, J. Sperling, I. Bar-Joseph, Nano Lett. 12, 4260 (2012)

    Article  CAS  Google Scholar 

  42. Z. Gueroui, A. Libchaber, Phys. Rev. Lett. 93, 166108 (2004)

    Article  Google Scholar 

  43. T. Pons et al., Nano Lett. 7, 3157 (2007)

    Article  CAS  Google Scholar 

  44. D. Nepal, L.F. Drummy, S. Biswas, K. Park, R.A. Vaia, ACS Nano 7, 9064 (2013)

    Article  CAS  Google Scholar 

  45. A.L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, Nat. Nanotechnol. 3, 660 (2008)

    Article  CAS  Google Scholar 

  46. F. Di Benedetto et al., Nat. Nanotechnol. 3, 614 (2008)

    Article  Google Scholar 

  47. A. Camposeo et al., Small 5, 562 (2009)

    Article  CAS  Google Scholar 

  48. P. Wang et al., Nano Lett. 12, 3145 (2012)

    Article  CAS  Google Scholar 

  49. C. Meng et al., Adv Mater 23, 3770 (2011)

    CAS  Google Scholar 

  50. X. Shi, Y. Tu, X. Liu, E.S. Yeung, H. Gai, Phys. Chem. Chem. Phys. 15, 3130 (2013)

    Article  CAS  Google Scholar 

  51. J.E. Donehue, E. Wertz, C.N. Talicska, J.S. Biteen, J. Phys. Chem. C 118, 15027 (2014)

    Article  CAS  Google Scholar 

  52. X. Yang, B. Li, ACS Macro Lett. 3, 1266 (2014)

    Article  CAS  Google Scholar 

  53. D. O’Carroll, I. Lieberwirth, G. Redmond, Small 3, 1178 (2007)

    Article  CAS  Google Scholar 

  54. G. Morello, M. Moffa, S. Girardo, A. Camposeo, D. Pisignano, Adv. Funct. Mater. 24, 5225 (2014)

    Article  CAS  Google Scholar 

  55. C. Meng et al., Adv. Mater. 23, 3770 (2011)

    CAS  Google Scholar 

  56. M.D. McGehee et al., Phys. Rev. B 58, 7035 (1998)

    Article  CAS  Google Scholar 

  57. Q. Song, L. Liu, L.J. Xu, Lightwave Technol. 27, 4374 (2009)

    Article  CAS  Google Scholar 

  58. D.E. Gómez, I. Pastoriza-Santos, P. Mulvaney, Small 1, 238 (2005)

    Article  Google Scholar 

  59. H. Li, J. Li, L. Qiang, Y. Zhang, S. Hao, Nanoscale 5, 6297 (2013)

    Article  CAS  Google Scholar 

  60. S. Kango et al., Prog. Polym. Sci. 38, 1232 (2013)

    Article  CAS  Google Scholar 

  61. E. Enz, V. La Ferrara, G. Scalia, ACS Nano 7, 6627 (2013)

    Article  CAS  Google Scholar 

  62. P.J. Pauzauskie, D.J. Sirbuly, P. Yang, Phys. Rev. Lett. 96, 143903 (2006)

    Article  Google Scholar 

  63. M. Melli et al., Nano Lett. 13, 2687 (2013)

    Article  CAS  Google Scholar 

  64. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, K. Brunner, Appl. Phys. Lett. 89, 231104 (2006)

    Article  Google Scholar 

  65. C.-M. Lai, H.-M. Wu, P.-C. Huang, S.-L. Wang, L.-H. Peng, Appl. Phys. Lett. 90, 141106 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support provided by the National Natural Science Foundation of China (Nos. 11804120 and 61574158), the Natural Science Foundation of Guangdong Province (No. 2017A030313026), the Fundamental Research Funds for the Central Universities (No. 21617334), and the Research Projects from Guangzhou (No. 2023A03J00229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X., Wen, L., Li, B. (2022). Optical Sources and Waveguides Based on Flexible 1D Nanomaterials. In: Ikhmayies, S.J. (eds) Advanced Nanomaterials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-11996-5_1

Download citation

Publish with us

Policies and ethics