Skip to main content

Continuous System Models

  • Chapter
  • First Online:
Models for Research and Understanding

Abstract

In this chapter, some general concepts on continuous models are discussed. This chapter refers both to models and to computer simulation. Classification of dynamic systems is reviewed and summarized. The main numerical methods for the concentrated parameter systems, governed by the ordinary differential equations are described. An example of a simulation task of a simple mechanical system is given. The methods of signal flow graphs and bond graphs are discussed. A new, alternate approach is proposed, using the differential inclusions instead of ordinary differential equations. Next, there are some remarks on the distributed parameter systems, partial differential equation models, and the finite element method. We do not discuss here software tools for continuous models. Any software described in publications of such type may result to be obsolete within a few years, while the more general concepts do not change so quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ames WF (1983) Numerical methods for partial differential equations, 2nd edn. Academic Press, New York

    Google Scholar 

  2. Bader G, Deufthard P (1983) A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numerische Mathematik 41:373–398

    Article  MathSciNet  MATH  Google Scholar 

  3. Bathe KJ (1976) Numerical methods in finite element analysis. Prentice-Hall. ISBN/ISSN. https://doi.org/10.1080/10.0136271901

  4. Bhatia NP, SzegoG P (1970) Stability theory of dynamical systems. Springer-Verlag, Berlin

    Book  Google Scholar 

  5. Borutzky W (2011) Bond graph modelling of engineering systems: Theory. Springer, Applications and Software. ISSN. 10.1441993673

    Google Scholar 

  6. Borutzky W, Gawthrop P (2006) Bond graph modelling. Math Comput Model Dyn Syst 12(2–3):103–105. https://doi.org/10.1080/13873950500069078

    Article  Google Scholar 

  7. Cellier F (1992) Hierarchical non-linear bond graphs: a unified methodology for modeling complex physical systems. Simulation 55(4):230–248. https://doi.org/10.1177/003754979205800404

    Article  Google Scholar 

  8. Cellier FE, Greifeneder J (1991) Continuous system modeling. Springer. ISBN/ISSN 978-1-4757-3922-0

    Google Scholar 

  9. Cellier FE, Elmquist H (1995) Automated formula manipulation supports object-oriented continuous system simulation. IEEE Cont Syst 13(2):28–38

    Google Scholar 

  10. Chaskalovic J (2008) Finite elements methods for engineering sciences. Springer. ISBN/ISSN 978-3-540-76343-7

    Google Scholar 

  11. Chen G (2004) Encyclopedia of RF and microwave engineering. Wiley, New York, pp 4881–4896

    Google Scholar 

  12. Collatz, Funktionalanalysis und Numerische Mathematik. Springer, ISBN/ISSN ISBN-10:3642950299

    Google Scholar 

  13. Dahlquist G, Bjorck A (2012) Numerical methods. Dover Publications, ISBN/ISSN, p 9780486139463

    Google Scholar 

  14. Dahlquist G, Bjork A (1974) Numerical methods. Prentice Hall

    Google Scholar 

  15. Faulkner EA (1969) Introduction to the theory of linear systems. Chapman & Hall. ISBN 0-412-09400-2

    Google Scholar 

  16. Gmiterko A, Lipták T, (1969) The usage of bond graphs methodology for mechanical systems designing. Appl Mech Mater 816(816):349–356. https://doi.org/10.4028/www.scientific.net/amm.816.349

  17. Hahn H (1967) Stability of motion. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  18. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I-modelling, state space analysis. Springer Verlag, Stability and Robustness. https://doi.org/10.1080/9783540441250

    Article  MATH  Google Scholar 

  19. Ifeachor EC, Jervis BW (1993) Digital signal processing. ISBN, Addison-Wiley, p 029154413X

    Google Scholar 

  20. Krylov NM, Bogoliubov N (1943) Introduction to nonlinear mechanics. Princeton Univ. Press, Princeton, US. 0691079854. Archived from the original on 2013-06-20

    Google Scholar 

  21. Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13(2):217–237. https://doi.org/10.1002/cpa.3160130205

    Article  MATH  Google Scholar 

  22. Marks RJ (1991) Introduction to shannon sampling and interpolation theory. Springer-Verlag

    Google Scholar 

  23. Martynyuk AA (ed) (2003) Advances in stability theory at the end of the 20th century. Taylor & Francis, London

    MATH  Google Scholar 

  24. Mason SJ (1956). Feedback theory—further properties of signal flow graphs. Proceed IRE: 920–926

    Google Scholar 

  25. McNamara C (2006) Field guide to consulting and organizational development. Authenticity Consulting, LLC. 10:1933719206

    Google Scholar 

  26. Page SE (2018) The model thinker. Hachette Book Group, New York. 978-0-465-009462-2

    Google Scholar 

  27. Matsson J (2020) An introduction to ANSYS Fluent 2020. SDC Publications, ISBN/ISSN, p 1630573965

    Google Scholar 

  28. Raczynski S (2016) Takeoff vibrations of a jetliner: simulating possible cause. Conference paper: annual simulation symposium, the society for modeling and simulation (the society for modeling and simulation, eds.) , Pasadena CA, ISBN/ISSN 1-56555-359-4, 2016

    Google Scholar 

  29. Sagawa JK, Nagano MS (2015) Applying bond graphs for modelling the manufacturing dynamics. Elsevier. https://doi.org/10.1016/j.ifacol.2015.06.390

    Article  Google Scholar 

  30. Tavangarian D, Waldschmidt K (1980) Signal flow graphs for network simulation. Simulation 34(3):79–92. https://doi.org/10.1177/003754978003400308

    Article  MATH  Google Scholar 

  31. Willems JL (1970) Stability theory of dynamical systems. UK, Nelson, p 0177810068

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw Raczynski .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raczynski, S. (2022). Continuous System Models. In: Models for Research and Understanding. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11926-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11926-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11925-5

  • Online ISBN: 978-3-031-11926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics