Skip to main content

Performance-Based Estimation of Lateral Spread Displacement in the State of California: A Case Study for the Implementation of Performance-Based Design in Geotechnical Practice

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022) (PBD-IV 2022)

Abstract

Within the last decade, many researchers have demonstrated that performance-based methods for estimating the hazard from liquefaction triggering and its effects can effectively be approximated using simplified, map-based methods. However, the development of the reference parameter maps that are necessary for the implementation of these simplified performance-based methods is major endeavor and has proven to be a significant impediment for the implementation of these methods in engineering practice. This study presents a case history of how the simplified performance-based reference parameter maps for a liquefaction-related hazard (lateral spread displacement) were recently developed for a single state known for its high seismicity (California) in the United States. Through a mentored research experience involving several undergraduate and graduate students, the development of the lateral spread reference parameter maps corresponding to three commonly used return periods (475 years, 1033 years, and 2475 years) for the State of California is summarized and presented. When combined with an existing simplified performance-based lateral spread method, the reference parameter maps described in this paper become a powerful design resource for engineers in California. Example lateral spread displacement values are computed for various parts of the state to validate the maps/approach and to demonstrate the performance-based methodology and potential uses/benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamada, M., Towhata, I., Yasuda, S., Isoyama, R.: Study of permanent ground displacement induced by seismic liquefaction. Comput. Geotech. 4, 197–220 (1987)

    Article  Google Scholar 

  2. Bartlett, S.F., Youd, T.L.: Empirical prediction of liquefaction-induced lateral spread. J. Geotech. Eng. 121(4), 316–329 (1995)

    Article  Google Scholar 

  3. Bardet, J.-P., Tobita, T., Mace, N., Hu, J.: Regional modeling of liquefaction-induced ground deformation. Earthq. Spectra 18(1), 19–46 (2002)

    Article  Google Scholar 

  4. Youd, T.L., Hansen, C.M., Bartlett, S.F.: Revised multilinear regression equations for prediction of lateral spread displacement. J. Geotech. Geoenviron. Eng. 128(12), 1007–1017 (2002)

    Article  Google Scholar 

  5. Zhang, G., Robertson, P.K., Brachman, R.W.I.: Estimation liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. J. Geotech. Geoenv. Eng. 130(8), 861–871 (2004)

    Article  Google Scholar 

  6. Faris, A.T., Seed, R.B., Kayen, R.E., Wu, J.: A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading. In: Proceedings, 8th U.S. Nat. Conference Earthquake Eng., EERI, vol. 3, pp. 1584–1593. Oakland, CA, (2006)

    Google Scholar 

  7. Bazzurro, P., Cornell, C.A.: Nonlinear soil-site effects in probabilistic seismic-hazard analysis. Bull. Seismolog. Soc. America 94(6), 2110–2130 (2004)

    Article  Google Scholar 

  8. Kramer, S.L., Mayfield, R.T.: The return period of soil liquefaction. J. Geotech. Geoenviron. Eng. 133(7), 802–813 (2007)

    Article  Google Scholar 

  9. Franke, K.W., Wright, A.D.: An alternative performance-based liquefaction initiation procedure for the standard penetration test. In: Proc. Geo-Congress 2013, ASCE, pp. 846–849. Reston, VA (2013)

    Google Scholar 

  10. Franke, K.W., Wright, A.D., Ekstrom, L.T.: Comparative study between two performance-based liquefaction triggering models for the standard penetration test. J. Geotech. Geoenviron. Eng. 140(5), 12 (2014)

    Article  Google Scholar 

  11. Franke, K.W., Kramer, S.L.: A procedure for the empirical evaluation of lateral spread displacement hazard curves. J. Geotech. Geoenviron. Eng. 140(1), 110–120 (2014)

    Article  Google Scholar 

  12. Mayfield, R.T., Kramer, S.L., Huang, Y.M.: Simplified approximation procedure for performance-based evaluation of liquefaction potential. J. Geotech. Geoenviron. Eng. 136(1), 140–150 (2010)

    Article  Google Scholar 

  13. Ulmer, K.J., Franke, K.W.: Modified performance-based liquefaction triggering procedure using liquefaction loading parameter maps. J. Geotech. Geoenviron. Eng. 142(3), 11p (2016)

    Article  Google Scholar 

  14. Ekstrom, L.T., Franke, K.W.: Simplified procedure for the performance-based prediction of lateral spread displacements. J. Geotech. Geoenviron. Eng. 142(7), 11p (2016)

    Article  Google Scholar 

  15. EZ-FRISK homepage, Fugro USA Land, Inc. https://www.ez-frisk.com/. Accessed 27 Oct 2021

  16. Field, E.H., Jordan, T.H., Cornell, C.A.: OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seism. Res. Lett. 74(4), 406–419 (2003)

    Article  Google Scholar 

  17. Field, E.H., et al.: Synoptic view of the third uniform California earthquake rupture forecast (UCERF3). Seismol. Res. Lett. 88(5), 1259–1267 (2017)

    Article  Google Scholar 

  18. Petersen, M.D., et al.: Documentation for the 2008 Update of the Unites States National Seismic Hazard Maps. USGS Open File Report 2008–1128, U.S. Department of the Interior, p. 60 (2008)

    Google Scholar 

  19. Ulmer, K.J., Ekstrom, L.T., Franke, K.W.: Optimum grid spacing for simplified performance-based liquefaction and lateral spread displacement parameter maps. In: Proceeding of 6th International Conference on Earthquake Geotechnical Engineering, ISSMGE, London, U.K. (2015)

    Google Scholar 

  20. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings, 1968 ACM National Conference, pp. 517–524 (1968)

    Google Scholar 

  21. Khattar, R., Hales, R., Ames, D.P., Nelson, E.J., Jones, N., Williams, G.: Tethys app store: simplifying deployment of web applications for the international GEOGloWS initiative. Environ. Model. Softw. 146, 105227 (2021)

    Google Scholar 

  22. Swain, N.R., et al.: A new open source platform for lowering the barrier for environmental web app development. Environ. Model. Softw. 85, 11–26 (2016)

    Article  Google Scholar 

  23. Dolder, D., Williams, G.P., Miller, A.W., Nelson, E.J., Jones, N.L., Ames, D.P.: Introducing an open-source regional water quality data viewer tool to support research data access. Hydrology 8(2), 91 (2021)

    Article  Google Scholar 

  24. Evans, S.W., Jones, N.L., Williams, G.P., Ames, D.P., Nelson, E.J.: Groundwater level mapping tool: an open source web application for assessing groundwater sustainability. Environ. Model. Softw. 131, 104782 (2020)

    Article  Google Scholar 

  25. Hales, R.C., Nelson, E.J., Williams, G.P., Jones, N., Ames, D.P., Jones, J.E.: The grids python tool for querying spatiotemporal multidimensional water data. Water 13(15), 2066 (2021)

    Article  Google Scholar 

  26. Sanchez Lozano, J., et al.: A Streamflow bias correction and performance eval-uation web application for geoglows ECMWF streamflow services. Hydrology 8(2), 71 (2021)

    Google Scholar 

  27. Franke, K.W., Ulmer, K.J., Astorga, M.L., Ekstrom, L.T.: SPLiq: A new performance-based assessment tool for liquefaction triggering and its associated hazards using the SPT. In: Proceedings of Performance-Based Design in Earthquake Geotechnical Engineering III, ISSMGE, London, U.K. (2017)

    Google Scholar 

  28. Liquefaction Hazard App homepage. https://tethys.byu.edu/apps/lfhazard/. Accessed 10 Nov 2021

  29. Franke, K.W., Youd, T.L., Ekstrom, L.T., He, J.: Probabilistic lateral spread evaluation for long, linear infrastructure using performance-based reference parameter maps. In: Proceedings of Geo-Risk 2017. ASCE, Reston, VA, USA (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franke, K.W. et al. (2022). Performance-Based Estimation of Lateral Spread Displacement in the State of California: A Case Study for the Implementation of Performance-Based Design in Geotechnical Practice. In: Wang, L., Zhang, JM., Wang, R. (eds) Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022). PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-11898-2_45

Download citation

Publish with us

Policies and ethics