Skip to main content

Part of the book series: Geotechnical, Geological and Earthquake Engineering ((GGEE,volume 52))

Abstract

Helical piles have become popular foundation option owing to their many advantages related to ease of installation and large load carrying capacity. They are typically manufactured of straight steel shafts fitted with one or more helices and are installed using mechanical torque. They can sustain static and dynamic loading and are increasingly used in applications that induce complex loading conditions on them. The behavior and design of single vertical helical piles subjected to static loading is well investigated. However, a few studies investigated the dynamic or seismic behavior of single helical piles and their group behavior. This paper presents recent advances in evaluating the axial and lateral capacity and performance of helical piles and their response to dynamic and seismic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwalan, M.F., El Naggar, M.H.: Load-transfer mechanism of helical piles under compressive and impact loading. ASCE Int. J. Geomech. (2021). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002037

    Article  Google Scholar 

  • Alwalan, M.F., El Naggar, M.H.: Analytical models of impact force-time response generated from high strain dynamic load test on driven and helical piles. Comput. Geotech. 128 (2020a). https://doi.org/10.1016/j.compgeo.2020.103834

  • Alwalan, M.F., El Naggar, M.H.: Finite element analysis of helical piles subjected to axial impact loading. Comput. Geotech. 123 (2020b). https://doi.org/10.1016/j.compgeo.2020.103597

  • Al-baghdadi, T.A., Brown, M.J., Knappett, J.A., Ishikura, R.: Modelling of laterally loaded screw piles with large helical plates in sand. In: Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics (Frontiers in Offshore Geotechnics III), Oslo, Norway, 10-12 June 2015, pp. 503–508 (2015)

    Google Scholar 

  • Bagheri, F., El Naggar, M.H.: Effects of installation disturbance on behavior of multi-helix piles in structured clays. J. Deep Found. 9(2), 80–91 (2016)

    Article  Google Scholar 

  • Bradka, T.D.: Vertical capacity of helical screw anchor piles. Master of Engineering Report, University of Alberta, Alberta, Canada (1997)

    Google Scholar 

  • Brandenberg, S.J., Zhao, M., Boulanger, R.W., Wilson, D.W.: p-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil. J. Geotech. Geoenviron. Eng. 139, 1262–1274 (2013)

    Google Scholar 

  • Das, B., Ramana, G.: Principles of soil dynamics, 2nd International SI (edn.). Cengage learning, Boston (2011)

    Google Scholar 

  • Elgamal, A., Yang, Z., Parra, E.: Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn. Earthq. Eng. 22, 259–271 (2002)

    Article  Google Scholar 

  • Elkasabgy, M., El Naggar, M.H.: Dynamic response of vertically loaded helical and driven steel piles. Can. Geotech. J. 50(5), 521–535 (2013)

    Article  Google Scholar 

  • Elkasabgy, M., El Naggar, M.H.: Axial compressive response of large-capacity helical and driven steel piles in cohesive soil. Can. Geotech. J. 52(2), 224–243 (2015)

    Article  Google Scholar 

  • Elkasabgy, M.A., El Naggar, M.H.: Lateral vibration of helical and driven steel piles installed in cohesive soils. ASCE J. Geotech. Geoenviron. Eng. 144(9) (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001899

  • Elkasabgy, M., El Naggar, M.H.: Lateral performance and p-y curves for large-capacity helical piles installed in clayey glacial deposit. Geotech. Geoenviron. Eng. ASCE (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002063

  • El-Sawy, M.K., El Naggar, M.H., Cerato, A.B., Elgamal, A.: Data reduction and dynamic p-y curves of helical piles from large scale shake table tests. Geotech. Geoenviron. Eng. ASCE 145(10), 04019075 (2019a)

    Google Scholar 

  • El-Sawy, M.K., El Naggar, M.H., Cerato, A.B., Elgamal, A.: Seismic performance of helical piles in dry sand from large scale shake table tests. Geotechnique 69(12), 1071–1085 (2019b). https://doi.org/10.1680/jgeot.18.P.001

    Article  Google Scholar 

  • Elsharnouby, M., El Naggar, M.H.: Field investigation of lateral monotonic and cyclic performance of reinforced helical pulldown micropiles. Can. Geotech. J. (2018a). https://doi.org/10.1139/cgj-2017-0330,Publishedon-lineJan23

    Article  Google Scholar 

  • ElSharnouby, M.M., El Naggar, M.H.: Axial monotonic and cyclic performance of fibre-reinforced polymer (FRP) – steel fibre–reinforced helical pulldown micropiles (FRP-RHPM). Can. Geotech. J. 49(12), 1378–1392 (2012a)

    Article  Google Scholar 

  • ElSharnouby, M.M., El Naggar, M.H.: Field investigation of axial monotonic and cyclic performance of reinforced helical pulldown micropiles. Can. Geotech. J. 49(5), 560–573 (2012b)

    Article  Google Scholar 

  • Elsherbiny, Z., El Naggar, M.H.: Axial compressive capacity of helical piles from field tests and numerical study. Can. Geotech. J. 50(12), 1191–1203 (2013)

    Article  Google Scholar 

  • Fahmy, A., El Naggar, M.H.: Cyclic lateral performance of helical tapered piles in silty sand. J. Deep Found. 10(3), 111–124 (2016a)

    Article  Google Scholar 

  • Fahmy, A., El Naggar, M.H.: Cyclic axial performance of helical tapered piles in sand. J. Deep Found. Inst. (2016b). https://doi.org/10.1080/19375247.2016.1211353

  • Fayez, A.F., El Naggar, M.H., Cerato, A.B., Elgamal, A.: Assessment of SSI effects on stiffness of single and grouped helical piles in dry sand from large shake table tests. Bull. Earthq. Eng. (2021). https://doi.org/10.1007/s10518-021-01241-7

  • Fayez, A., El Naggar, M.H., Cerato, A., Elgamal, A.: Seismic response of helical pile groups from shake table experiments. Soil Dyn. Earthq. Eng. 152 (2022). https://doi.org/10.1016/j.soildyn.2021.107008

  • Fleming, B.J., Sritharan, S., Miller, G.A., Muraleetharan, K.K.: Full-scale seismic testing of piles in improved and unimproved soft clay. Earthq. Spectra 32(1), 239–265 (2016)

    Google Scholar 

  • Hussein, A.F., El Naggar, M.H.: Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils. Soil Dyn. Earthq. Eng. 149 (2021a). https://doi.org/10.1016/j.soildyn.2021.106853

  • Hussein, A.F., El Naggar, M.H.: Seismic behaviour of piles in non-liquefiable and liquefiable soil. Bull. Earthq. Eng. (2021b). https://doi.org/10.1007/s10518-021-01244-4

  • Hussein, A.F., El Naggar, M.H.: Effect of model scale on helical piles response established from shake table tests. Soil Dyn. Earthq. Eng. 152 (2022a). https://doi.org/10.1016/j.soildyn.2021.107013

  • Hussein, A.F., El Naggar, M.H.: Seismic performance of driven and helical piles in cohesive soil. Acta Geotechnica (2022b, submitted)

    Google Scholar 

  • Juirnarongrit, T., Ashford, S.A.: Soil-pile response to blast-induced lateral spreading. II: analysis and assessment of the p–y method. ASCE Geotech. Geoenviron. Eng. ASCE (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(163)

  • Livneh, B., El Naggar, M.H.: Axial load testing and numerical modeling of square shaft helical piles. Can. Geotech. J. 45(8), 1142–1155 (2008)

    Article  Google Scholar 

  • Lutenegger, A.J.: Cylindrical Shear Or Plate Bearing? – Uplift behavior if multi-helix screw anchors in clay. In: International Foundation Congress and Equipment Expo, pp. 456–463 (2009)

    Google Scholar 

  • Matlock, H.: Correlations for design of laterally loaded piles in soft clay. In: Proceedings of the 2nd Offshore Technology Conference, Houston, Texas, pp. 577–594 (1970)

    Google Scholar 

  • Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L.: OpenSees command language manual Pacific Earthquake Engineering Research (PEER) Center 264 (2006)

    Google Scholar 

  • McClelland, B., Focht, J.A.: Soil modulus of laterally loaded piles. Trans. ASCE 123, 1049–1063 (1958)

    Google Scholar 

  • Mooney, J.S., Clemence, S.P., Adamczak, S.: Uplift capacity of helix anchors in clay and silt. In: ASCE Convention Conference Proceedings, New York, pp. 48–72. ASCE (1985)

    Google Scholar 

  • Murchison, J., O'Neill, M.: Evaluation of p-y relationships in cohesionless soils: analysis and design of pile foundations. In: Proceedings of the Symposium in conjunction with ASCE National Convention, pp. 174–191 (1984)

    Google Scholar 

  • Orang, M.J., Boushehri, R., Motamed, R., Prabhakaran, A., Elgamal, A.: Large-scale shake table experiment on the performance of helical piles in liquefiable soils. In: Proceedings of the 45th DFI Annual Conference on Deep Foundations, Deep Foundations Institute (2021)

    Google Scholar 

  • Perko, H.A.: Helical Piles: A Practical Guide to Design and Installation. Wiley, New Jersey (2009)

    Book  Google Scholar 

  • Reese, L.C., Cox, W.R., Koop, F.D.: Field testing and analysis of laterally loaded piles in stiff clay. In: Proceedings of the 7th Offshore Technology Conference, Dallas, Texas, pp. 672–690 (1975)

    Google Scholar 

  • Reese, L.C., Welch, R.C.: Lateral loading of deep foundations in stiff clay. J. Geotech. Eng. Div. ASCE 101(GT7), 633–649 (1975)

    Google Scholar 

  • Reese, L.C., Van Impe, W.F.: Single Piles and Pile Group Under Lateral Loading, 2nd edn. Balkema, Rotterdam (2001)

    Google Scholar 

  • Sarkar, D., König, D., Goudarzy, M.: The influence of particle characteristics on the index void ratios in granular materials. Particuology 46, 1–13 (2019)

    Google Scholar 

  • Shahbazi, M., Cerato, A., El Naggar, M.H., Elgamal, A.: Evaluation of seismic soil-structure interaction of full-scale grouped helical piles in dense sand. ASCE Int. J. Geomech. 20(12) (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001876

  • Tappenden, K.M.: Predicting the Axial Capacity of Screw Piles Installaed in Western Canadian Soils. The University of Alberta, Edmonton (2007)

    Google Scholar 

  • Vesic, A.S.: Beam on elastic subgrade and the Winkler hypothesis. In: Proceedings of 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, vol. 1, pp. 845–850 (1961)

    Google Scholar 

  • Yang, Z., Lu, J., Elgamal, A.: OpenSees soil models and solid-fluid fully coupled ele-ments User’s Manual Ver 1:27 (2008)

    Google Scholar 

  • Zhang, D.J.Y.: Predicting capacity of helical screw piles in Alberta soils. M.E.Sc. thesis, University of Alberta, Edmonton, Alberta, Canada (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hesham El Naggar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Naggar, M.H. (2022). Recent Advances in Helical Piles for Dynamic and Seismic Applications. In: Wang, L., Zhang, JM., Wang, R. (eds) Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022). PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-031-11898-2_2

Download citation

Publish with us

Policies and ethics