Skip to main content

The Effect of the Number of Neural Networks on Deep Learning Schemes for Solving High Dimensional Nonlinear Backward Stochastic Differential Equations

  • Conference paper
  • First Online:
Book cover Progress in Industrial Mathematics at ECMI 2021 (ECMI 2021)

Part of the book series: Mathematics in Industry ((TECMI,volume 39))

Included in the following conference series:

Abstract

We consider the deep learning based scheme proposed in [W. E and J. Han and A. Jentzen, Commun. Math. Stat., 5 (2017), pp. 349–380] and study the effect of the number of neural networks on the gradient of the solution. We demonstrate that using one neural network improves its numerical stability for the whole path and also reduces the computational time. This is illustrated with several 100-dimensional nonlinear backward stochastic differential equations including nonlinear pricing problems in finance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender, C., Zhang, J.: Time discretization and Markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18(1), 143–177 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergman, Y.Z.: Option pricing with differential interest rates, Rev. Finan. Stud. 8(2), 475–500 (1995).

    Article  Google Scholar 

  3. Chan-Wai-Nam, Q., Mikael, J., Warin, X.: Machine learning for semi linear PDEs, J. Sci. Comput. 79(3), 1667–1712 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat. 5(4), 349–380 (2017).

    Google Scholar 

  5. E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: On multilevel picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput. 79(3), 1534–1571 (2019).

    Google Scholar 

  6. Gobet, E., López-Salas, J.G., Turkedjiev, P., Vázquez, C.: Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs, SIAM J. Sci. Comput. 38(6), C652–C677 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. Gobet, E., Turkedjiev, P.: Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions, Math. Comp. 85(299), 1359–1391 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Kapllani, L., Teng, L.: Multistep schemes for solving backward stochastic differential equations on GPU. arXiv preprint arXiv:1909.13560 (2019).

    Google Scholar 

  9. Karoui, N.E., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finan. 7(1), 1–71 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation, Syst. Control. Lett. 14(1), 55–61 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruijter, M.J., Oosterlee, C.W.: A Fourier cosine method for an efficient computation of solutions to BSDEs, SIAM J. Sci. Comput. 37(2), A859–A889 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. Teng, L.: A review of tree-based approaches to solve forward-backward stochastic differential equations, arXiv preprint arXiv:1809.00325v4 (2019).

    Google Scholar 

  13. Teng, L.: Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations, arXiv preprint arXiv:2107.06673 (2021).

    Google Scholar 

  14. Zhang, G.: A sparse-grid method for multi-dimensional backward stochastic differential equations, J. Comput. Math. 31(3), 221–248 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, W., Zhang, G., Ju, L.: A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal. 48(4), 1369–1394 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenc Kapllani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kapllani, L. (2022). The Effect of the Number of Neural Networks on Deep Learning Schemes for Solving High Dimensional Nonlinear Backward Stochastic Differential Equations. In: Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at ECMI 2021. ECMI 2021. Mathematics in Industry(), vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-11818-0_10

Download citation

Publish with us

Policies and ethics