Skip to main content

Neovascular Glaucoma in Retinal Vein Occlusions

  • Chapter
  • First Online:
Neovascular Glaucoma

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 224 Accesses

Abstract

Neovascular glaucoma (NVG) is a particularly aggressive form of secondary glaucoma that commonly arises due to ischemic retinal diseases such as diabetic retinopathy, retinal vein occlusion, and ocular ischemic syndrome. In this chapter, we outline the pathogenesis of how retinal vein occlusions may lead to NVG, as well as summarize recommendations for diagnosis and treatment of these comorbid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Interim Guidelines for Management of Retinal Vein Occlusion [Internet]. [cited 2020 Nov 24]. Available from: https://www.rcophth.ac.uk/wp-content/uploads/2014/12/2010-SCI-095-RVO-Interim-Guidelines-Dec-2010-FINAL.pdf

  2. Rong AJ, Swaminathan SS, Vanner EA, Parrish RK. Predictors of neovascular glaucoma in central retinal vein occlusion. Am J Ophthalmol. 2019;204:62–9.

    Article  Google Scholar 

  3. Yen Y-C, Weng S-F, Chen H-A, Lin Y-S. Risk of retinal vein occlusion in patients with systemic lupus erythematosus: a population-based cohort study. Br J Ophthalmol. 2013;97(9):1192–6.

    Article  Google Scholar 

  4. Natural history and clinical management of central retinal vein occlusion. The central vein occlusion study group. Arch Ophthalmol. 1997;115(4):486–91.

    Google Scholar 

  5. Fong AC, Schatz H. Central retinal vein occlusion in young adults. Surv Ophthalmol. 1993;37(6):393–417.

    Article  CAS  Google Scholar 

  6. Glacet-Bernard A, Leroux les Jardins G, Lasry S, Coscas G, Soubrane G, Souied E, et al. Obstructive sleep apnea among patients with retinal vein occlusion. Arch Ophthalmol. 2010;128(12):1533–8.

    Google Scholar 

  7. Chou K-T, Huang C-C, Tsai D-C, Chen Y-M, Perng D-W, Shiao G-M, et al. Sleep apnea and risk of retinal vein occlusion: a nationwide population-based study of Taiwanese. Am J Ophthalmol. 2012;154(1):200–205.e1.

    Google Scholar 

  8. Lahey JM, Tunç M, Kearney J, Modlinski B, Koo H, Johnson RN, et al. Laboratory evaluation of hypercoagulable states in patients with central retinal vein occlusion who are less than 56 years of age. Ophthalmology. 2002;109(1):126–31.

    Article  Google Scholar 

  9. Risk factors for branch retinal vein occlusion. The eye disease case-control study group. Am J Ophthalmol. 1993;116(3):286–96.

    Google Scholar 

  10. Quinlan PM, Elman MJ, Bhatt AK, Mardesich P, Enger C. The natural course of central retinal vein occlusion. Am J Ophthalmol. 1990;110(2):118–23.

    Article  CAS  Google Scholar 

  11. Zegarra H, Gutman FA, Conforto J. The natural course of central retinal vein occlusion. Ophthalmology. 1979;86(11):1931–42.

    Article  CAS  Google Scholar 

  12. Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefes Arch Clin Exp Ophthalmol. 1990;228(3):201–17.

    Article  CAS  Google Scholar 

  13. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci. 1994;35(3):991–7.

    CAS  Google Scholar 

  14. Barac IR, Pop MD, Gheorghe AI, Taban C. Neovascular secondary glaucoma, etiology and pathogenesis. Rom J Ophthalmol. 2015;59(1):24–8.

    Google Scholar 

  15. Michaelson I. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases [Internet]. undefined. 1948 [cited 2020 Nov 24]. Available from: http://The-mode-of-development-of-the-vascular-system-of-Michaelson/69f11a4f0ce22a430e1c8483d437c529f1e6c287/

  16. Adair TH, Montani J-P. Overview of angiogenesis [Internet]. Angiogenesis. Morgan & Claypool Life Sciences; 2010 [cited 2020 Nov 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53238/

  17. John T, Sassani JW, Eagle RC. The myofibroblastic component of Rubeosis Iridis. Ophthalmology. 1983;90(6):721–8.

    Article  CAS  Google Scholar 

  18. Laatikainen L, Kohner EM, Khoury D, Blach RK. Panretinal photocoagulation in central retinal vein occlusion: a randomised controlled clinical study. Br J Ophthalmol. 1977;61(12):741–53.

    Article  CAS  Google Scholar 

  19. Yasuda Y, Hirano Y, Esaki Y, Tomiyasu T, Suzuki N, Yasukawa T, et al. Peripheral microvascular abnormalities detected by wide-field fluorescein angiography in eyes with branch retinal vein occlusion. Ophthalmic Res. 2019;61(2):107–14.

    Article  Google Scholar 

  20. Thomas AS, Thomas MK, Finn AP, Fekrat S. Use of the ischemic index on widefield fluorescein angiography to characterize a central retinal vein occlusion as ischemic or nonischemic. Retina. 2019;39(6):1033–8.

    Article  Google Scholar 

  21. Storch M, Bemme S, Rehak M, Hoerauf H, Feltgen N. Ultra-widefield angiography for retinal vein occlusion: how large is large enough? Ophthalmologe. 2018;115(6):499–504.

    Article  CAS  Google Scholar 

  22. Böker A, Seibel I, Rübsam A, Joussen AM, Zeitz O. Peripheral ischemia in diabetic retinopathy and retinal vein occlusion: new insights with ultra-wide-angle fundus imaging and wide-angle fluorescein angiography. Klin Monatsbl Augenheilkd. 2018;235(9):974–9.

    Google Scholar 

  23. Sinclair SH, Gragoudas ES. Prognosis for rubeosis iridis following central retinal vein occlusion. Br J Ophthalmol. 1979;63(11):735–43.

    Article  CAS  Google Scholar 

  24. Tso MO, Jampol LM. Pathophysiology of hypertensive retinopathy. Ophthalmology. 1982;89(10):1132–45.

    Article  CAS  Google Scholar 

  25. Kiel JW. The ocular circulation [internet]. San Rafael (CA): Morgan & Claypool Life Sciences; 2010 [cited 2020 Dec 5]. (Integrated Systems Physiology: from Molecule to Function to Disease). Available from: http://www.ncbi.nlm.nih.gov/books/NBK53323/

  26. Laties AM. Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol. 1967;77(3):405–9.

    Article  CAS  Google Scholar 

  27. Ye XD, Laties AM, Stone RA. Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci. 1990;31(9):1731–7.

    CAS  Google Scholar 

  28. Ehinger B. Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca Irus). Invest Ophthalmol Vis Sci. 1966;5(1):42–52.

    Google Scholar 

  29. Ip M, Hendrick A. Retinal vein occlusion review. Asia Pac J Ophthalmol (Phila). 2018;7(1):40–5.

    Google Scholar 

  30. La Spina C, De Benedetto U, Parodi MB, Coscas G, Bandello F. Practical management of retinal vein occlusions. Ophthalmol Ther [Internet]. 2012 Dec [cited 2021 Jun 13];1(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108135/

  31. Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Trans Am Ophthalmol Soc. 1981;79:371–422.

    CAS  Google Scholar 

  32. Comer G. Retinal vein occlusion [Internet]. [cited 2020 Dec 5]. Available from: https://eyewiki.aao.org/Retinal_Vein_Occlusion

  33. Brown DM, Heier JS, Clark WL, Boyer DS, Vitti R, Berliner AJ, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol. 2013;155(3):429–437.e7.

    Google Scholar 

  34. Holz FG, Roider J, Ogura Y, Korobelnik J-F, Simader C, Groetzbach G, et al. VEGF trap-eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol. 2013;97(3):278–84.

    Article  Google Scholar 

  35. Ip MS, Scott IU, VanVeldhuisen PC, Oden NL, Blodi BA, Fisher M, et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the standard care vs corticosteroid for retinal vein occlusion (SCORE) study report 5. Arch Ophthalmol. 2009;127(9):1101–14.

    Article  Google Scholar 

  36. Parodi MB, Iacono P, Petruzzi G, Parravano M, Varano M, Bandello F. Dexamethasone implant for macular edema secondary to ischemic retinal vein occlusions. Retina. 2015;35(7):1387–92.

    Article  CAS  Google Scholar 

  37. Ramezani A, Esfandiari H, Entezari M, Moradian S, Soheilian M, Dehsarvi B, et al. Three intravitreal bevacizumab versus two intravitreal triamcinolone injections in recent-onset branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2012;250(8):1149–60.

    Article  CAS  Google Scholar 

  38. Bellotti A, Labbé A, Fayol N, El Mahtoufi A, Baudouin C. OCT and neovascular glaucoma. J Fr Ophtalmol. 2007;30(6):586–91.

    Article  CAS  Google Scholar 

  39. You QS, Guo Y, Wang J, Wei X, Camino A, Zang P, et al. Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography. Retina. 2020;40(5):891–7.

    Google Scholar 

  40. Ishibashi S, Tawara A, Sohma R, Kubota T, Toh N. Angiographic changes in iris and iridocorneal angle neovascularization after intravitreal bevacizumab injection. Arch Ophthalmol. 2010;128(12):1539–45.

    Article  CAS  Google Scholar 

  41. Vaz-Pereira S, Morais-Sarmento T, Esteves MR. Optical coherence tomography features of neovascularization in proliferative diabetic retinopathy: a systematic review. Int J Retina Vitreous. 2020;6:26.

    Article  Google Scholar 

  42. Braithwaite T, Nanji AA, Greenberg PB. Anti-vascular endothelial growth factor for macular edema secondary to central retinal vein occlusion. Cochrane Database Syst Rev. 2010;10:CD007325.

    Google Scholar 

  43. Brown DM, Wykoff CC, Wong TP, Mariani AF, Croft DE, Schuetzle KL, et al. Ranibizumab in preproliferative (ischemic) central retinal vein occlusion: the rubeosis anti-VEGF (RAVE) trial. Retina. 2014;34(9):1728–35.

    Article  CAS  Google Scholar 

  44. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124–1133.e1.

    Google Scholar 

  45. Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118(10):2041–9.

    Article  Google Scholar 

  46. Campochiaro PA, Clark WL, Boyer DS, Heier JS, Brown DM, Vitti R, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology. 2015;122(3):538–44.

    Article  Google Scholar 

  47. Heier JS, Clark WL, Boyer DS, Brown DM, Vitti R, Berliner AJ, et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: two-year results from the COPERNICUS study. Ophthalmology. 2014;121(7):1414–1420.e1.

    Google Scholar 

  48. Hikichi T, Higuchi M, Matsushita T, Kosaka S, Matsushita R, Takami K, et al. Two-year outcomes of intravitreal bevacizumab therapy for macular oedema secondary to branch retinal vein occlusion. Br J Ophthalmol. 2014;98(2):195–9.

    Article  Google Scholar 

  49. Prager F, Michels S, Kriechbaum K, Georgopoulos M, Funk M, Geitzenauer W, et al. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial. Br J Ophthalmol. 2009;93(4):452–6.

    Article  CAS  Google Scholar 

  50. Ehlers JP, Decroos FC, Fekrat S. Intravitreal bevacizumab for macular edema secondary to branch retinal vein occlusion. Retina. 2011;31(9):1856–62.

    Article  CAS  Google Scholar 

  51. Donati S, Barosi P, Bianchi M, Al Oum M, Azzolini C. Combined intravitreal bevacizumab and grid laser photocoagulation for macular edema secondary to branch retinal vein occlusion. Eur J Ophthalmol. 2012;22(4):607–14.

    Article  Google Scholar 

  52. Kreutzer TC, Alge CS, Wolf AH, Kook D, Burger J, Strauss R, et al. Intravitreal bevacizumab for the treatment of macular oedema secondary to branch retinal vein occlusion. Br J Ophthalmol. 2008;92(3):351–5.

    Article  CAS  Google Scholar 

  53. Karpilova MA, Durzhinskaya MH. Anti-VEGF drugs in the treatment of neovascular glaucoma. Vestn Oftalmol. 2019;135(5. Vyp. 2):299–304.

    Google Scholar 

  54. Rodrigues GB, Abe RY, Zangalli C, Sodre SL, Donini FA, Costa DC, et al. Neovascular glaucoma: a review. Int J Retina Vitreous. 2016;2:26.

    Article  Google Scholar 

  55. Sun Y, Liang Y, Zhou P, Wu H, Hou X, Ren Z, et al. Anti-VEGF treatment is the key strategy for neovascular glaucoma management in the short term. BMC Ophthalmol. 2016;16(1):150.

    Article  Google Scholar 

  56. Simha A, Aziz K, Braganza A, Abraham L, Samuel P, Lindsley KB. Anti-vascular endothelial growth factor for neovascular glaucoma. Cochrane Database Syst Rev. 2020;2:CD007920.

    Google Scholar 

  57. Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21(3):178–83.

    Article  Google Scholar 

  58. Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 2018;196:xxx–xxxviii.

    Google Scholar 

  59. Hayreh SS. Neovascular glaucoma. Prog Retin Eye Res. 2007;26(5):470–85.

    Article  Google Scholar 

  60. Hayreh SS, Klugman MR, Podhajsky P, Servais GE, Perkins ES. Argon laser panretinal photocoagulation in ischemic central retinal vein occlusion. A 10-year prospective study. Graefes Arch Clin Exp Ophthalmol. 1990;228(4):281–96.

    Article  CAS  Google Scholar 

  61. The Central Vein Occlusion Study Group N report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology. 1995;102(10):1434–44.

    Google Scholar 

  62. Fekrat S, Finkelstein D. Current concepts in the management of central retinal vein occlusion. Curr Opin Ophthalmol. 1997;8(3):50–4.

    Article  CAS  Google Scholar 

  63. Cekiç O, Chang S, Tseng JJ, Barile GR, Weissman H, Del Priore LV, et al. Intravitreal triamcinolone treatment for macular edema associated with central retinal vein occlusion and hemiretinal vein occlusion. Retina. 2005;25(7):846–50.

    Article  Google Scholar 

  64. Lee H, Shah GK. Intravitreal triamcinolone as primary treatment of cystoid macular edema secondary to branch retinal vein occlusion. Retina 2005;25(5):551–5.

    Google Scholar 

  65. Ozkiris A, Evereklioglu C, Erkiliç K, Ilhan O. The efficacy of intravitreal triamcinolone acetonide on macular edema in branch retinal vein occlusion. Eur J Ophthalmol. 2005;15(1):96–101.

    Article  CAS  Google Scholar 

  66. Jonas JB, Akkoyun I, Kamppeter B, Kreissig I, Degenring RF. Branch retinal vein occlusion treated by intravitreal triamcinolone acetonide. Eye (Lond). 2005;19(1):65–71.

    Article  CAS  Google Scholar 

  67. Chen SDM, Sundaram V, Lochhead J, Patel CK. Intravitreal triamcinolone for the treatment of ischemic macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2006;141(5):876–83.

    Article  CAS  Google Scholar 

  68. Cheng K-C, Wu W-C. Intravitreal triamcinolone acetonide for patients with macular edema due to branch retinal vein occlusion. Kaohsiung J Med Sci. 2006;22(7):321–30.

    Article  CAS  Google Scholar 

  69. Kola M, Hacioglu D, Turk A, Erdol H. The effectiveness and reliability of posterior sub-Tenon triamcinolone acetonide injection in branch retinal vein occlusion-related macular edema. Cutan Ocul Toxicol. 2016;35(3):185–9.

    Article  CAS  Google Scholar 

  70. Gurram MM. Effect of posterior sub–Tenon triamcinolone in macular edema due to non–ischemic vein occlusions. J Clin Diagn Res. 2013;7(12):2821–4.

    Google Scholar 

  71. Hayashi K, Hayashi H. Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2005;139(6):972–82.

    Article  CAS  Google Scholar 

  72. Haller JA, Bandello F, Belfort R, Blumenkranz MS, Gillies M, Heier J, et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 2010;117(6):1134–1146.e3.

    Google Scholar 

  73. Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol. 2007;125(3):309–17.

    Article  CAS  Google Scholar 

  74. Kim M, Lee DH, Byeon SH, Koh HJ, Kim SS, Lee SC. Comparison of intravitreal bevacizumab and dexamethasone implant for the treatment of macula oedema associated with branch retinal vein occlusion. Br J Ophthalmol. 2015;99(9):1271–6.

    Article  Google Scholar 

  75. Oh JY, Seo JH, Ahn JK, Heo JW, Chung H. Early versus late intravitreal triamcinolone acetonide for macular edema associated with branch retinal vein occlusion. Korean J Ophthalmol. 2007;21(1):18–20.

    Article  Google Scholar 

  76. Wingate RJ, Beaumont PE. Intravitreal triamcinolone and elevated intraocular pressure. Aust N Z J Ophthalmol. 1999;27(6):431–2.

    Article  CAS  Google Scholar 

  77. Martidis A, Duker JS, Greenberg PB, Rogers AH, Puliafito CA, Reichel E, et al. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology. 2002;109(5):920–7.

    Article  Google Scholar 

  78. Bakri SJ, Beer PM. The effect of intravitreal triamcinolone acetonide on intraocular pressure. Ophthalmic Surg Lasers Imaging. 2003;34(5):386–90.

    Article  Google Scholar 

  79. Ferrini W, Ambresin A. Intravitreal dexamethasone implant for the treatment of macular edema after retinal vein occlusion in a clinical setting. Klin Monatsbl Augenheilkd. 2013;230(4):423–6.

    Article  CAS  Google Scholar 

  80. Bonfiglio V, Reibaldi M, Fallico M, Russo A, Pizzo A, Fichera S, et al. Widening use of dexamethasone implant for the treatment of macular edema. Drug Des Devel Ther. 2017;11:2359–72.

    Article  CAS  Google Scholar 

  81. Rodgin SG. Neovascular glaucoma associated with uveitis. J Am Optom Assoc. 1987;58(6):499–503.

    CAS  Google Scholar 

  82. Sivak-Callcott JA, O’Day DM, Gass JD, Tsai JC. Evidence-based recommendations for the diagnosis and treatment of neovascular glaucoma. Ophthalmology. 2001;108(10):1767–76; quiz1777, 1800.

    Google Scholar 

  83. Ritch R. The pilocarpine paradox. J Glaucoma. 1996;5(4):225–7.

    CAS  Google Scholar 

  84. Centofanti M, Manni GL, Napoli D, Bucci MG. Comparative effects of intraocular pressure between systemic and topical carbonic anhydrase inhibitors: a clinical masked, cross-over study. Pharmacol Res. 1997;35(5):481–5.

    Article  CAS  Google Scholar 

  85. Delgado MF, Dickens CJ, Iwach AG, Novack GD, Nychka DS, Wong PC, et al. Long-term results of noncontact neodymium:yttrium-aluminum-garnet cyclophotocoagulation in neovascular glaucoma. Ophthalmology. 2003;110(5):895–9.

    Article  Google Scholar 

  86. Nabili S, Kirkness CM. Trans-scleral diode laser cyclophoto-coagulation in the treatment of diabetic neovascular glaucoma. Eye (Lond). 2004;18(4):352–6.

    Article  CAS  Google Scholar 

  87. Oguri A, Takahashi E, Tomita G, Yamamoto T, Jikihara S, Kitazawa Y. Transscleral cyclophotocoagulation with the diode laser for neovascular glaucoma. Ophthalmic Surg Lasers. 1998;29(9):722–7.

    Article  CAS  Google Scholar 

  88. Choy BNK, Lai JSM, Yeung JCC, Chan JCH. Randomized comparative trial of diode laser transscleral cyclophotocoagulation versus Ahmed glaucoma valve for neovascular glaucoma in Chinese – a pilot study. Clin Ophthalmol. 2018;12:2545–52.

    Article  Google Scholar 

  89. Yildirim N, Yalvac IS, Sahin A, Ozer A, Bozca T. A comparative study between diode laser cyclophotocoagulation and the Ahmed glaucoma valve implant in neovascular glaucoma: a long-term follow-up. J Glaucoma. 2009;18(3):192–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atalie C. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, N.A., Thompson, A.C. (2022). Neovascular Glaucoma in Retinal Vein Occlusions. In: Qiu, M. (eds) Neovascular Glaucoma. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-11720-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11720-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11719-0

  • Online ISBN: 978-3-031-11720-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics