Skip to main content

Rationalization of Room-Temperature Single-Molecule Toroics via Exchange Coupling

  • Chapter
  • First Online:
Single Molecule Toroics

Abstract

Single-molecule toroics (SMTs) are a type of multi-metal coordination complexes where onsite magnetic moments are well defined in a vortex arrangement, exhibiting a toroidal magnetic ground state with well-separated excited states. Due to their ability to generate at least two degenerate ground doublets and insensitivity to the external field, SMTs are a promising material for ultrahigh-dense data storage as well as for magnetoelectric couplings. Typically, SMTs can be divided into two groups according to the constitutional metal ions, namely, dysprosium(III)-based and heterometallic-based SMTs. The former is the pioneer, mainly taking advantage of strong magnetic anisotropy of the Dy(III) ion to produce a vortex-arranged magnetic moment where intramolecular dipole-dipole interactions serve as the magnetic links. However, those links are too weak to support the rationalization of SMT behavior at room temperature. In this chapter, we mainly focus on reviewing the latter type, which shows much stronger magnetic exchange couplings. Thus, the energy gap between the ground and the first excited states can be significantly enhanced by 10–100 times compared to the former type. Such advances are inspiring to achieve toroidal moments at much higher temperatures. Other than the 3d-4f SMTs, the pure 3d transition metal and 3d transition metal-radical system are also promising to develop. Moreover, an enhanced toroidal moment approach to connect SMTs to further strengthen the toroidal magnetic moments and enlarge the energy gaps is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamaguchi, Y., Kimura, T.: Magnetoelectric control of frozen state in a toroidal glass. Nat. Commun. 4, 2063–2067 (2013). https://doi.org/10.1038/ncomms3063

    Article  CAS  PubMed  Google Scholar 

  2. Gorbatsevich, A.A., Kopaev, Y.V.: Toroidal order in crystals. Ferroelectrics. 161, 321–334 (1994). https://doi.org/10.1080/00150199408213381

    Article  CAS  Google Scholar 

  3. Sannikov, D.G.: Ferrotoroic phase transition in boracites. Ferroelectrics. 219, 177–181 (1998). https://doi.org/10.1080/00150199808213514

    Article  Google Scholar 

  4. Schmid, H.: On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics. 252, 41–50 (2001). https://doi.org/10.1080/00150190108016239

    Article  CAS  Google Scholar 

  5. Rabe, K.M.: Response with a twist. Nature. 449, 674–675 (2007). https://doi.org/10.1038/449674a

    Article  CAS  PubMed  Google Scholar 

  6. Dubovik, V.M., Tugushev, V.V.: Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145–202 (1990). https://doi.org/10.1016/0370-1573(90)90042-Z

    Article  Google Scholar 

  7. Dong, Z.G., Zhu, J., Rho, J., Li, J.Q., Lu, C., Yin, X., Zhang, X.: Optical toroidal dipolar response by an asymmetric double-bar metamaterial. Appl. Phys. Lett. 101, 144105 (2012). https://doi.org/10.1063/1.4757613

    Article  CAS  Google Scholar 

  8. Spaldin, N.A., Fiebig, M., Mostovoy, M.: The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter. 20, 434203 (2008). https://doi.org/10.1088/0953-8984/20/43/434203

    Article  CAS  Google Scholar 

  9. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38, R123–R152 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  10. Kaelberer, T., Fedotov, V.A., Papasimakis, N., Tsai, D.P., Zheludev, N.I.: Toroidal dipolar response in a metamaterial. Science. 330, 1510–1512 (2010). https://doi.org/10.1126/science.1197172

    Article  CAS  PubMed  Google Scholar 

  11. Ederer, C., Spaldin, N.A.: Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 214404 (2007). https://doi.org/10.1103/PhysRevB.76.214404

    Article  CAS  Google Scholar 

  12. Ungur, L., Lin, S.Y., Tang, J., Chibotaru, L.F.: Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem. Soc. Rev. 43, 6894–6905 (2014). https://doi.org/10.1039/C4CS00095A

    Article  CAS  PubMed  Google Scholar 

  13. Van Aken, B.B., Rivera, J.P., Schmid, H., Fiebig, M.: Observation of ferrotoroidic domains. Nature. 449, 702–705 (2007). https://doi.org/10.1038/nature06139

    Article  CAS  PubMed  Google Scholar 

  14. Ascher, E.: Some properties of spontaneous currents. Helv. Phys. Acta. 39, 40–48 (1966)

    CAS  Google Scholar 

  15. Sanvito, S.: The rise of spinterface science. Nat. Phys. 6, 562–564 (2010). https://doi.org/10.1038/nphys1714

    Article  CAS  Google Scholar 

  16. Cornia, A., Seneor, O.: The molecular way. Nat. Mater. 16, 505–506 (2017). https://doi.org/10.1038/nmat4900

    Article  CAS  PubMed  Google Scholar 

  17. Tang, J., Hewitt, I., Madhu, N.T., Chastanet, G., Wernsdorfer, W., Anson, C.E., Benelli, C., Sessoli, R., Powell, A.K.: Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew. Chem. Int. Ed. 45, 1729–1733 (2006). https://doi.org/10.1002/anie.200503564

    Article  CAS  Google Scholar 

  18. Chibotaru, L.F., Ungur, L., Soncini, A.: The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem. Int. Ed. 47, 4126–4129 (2008). https://doi.org/10.1002/anie.200800283

    Article  CAS  Google Scholar 

  19. Luzon, J., Bernot, K., Hewitt, I.J., Anson, C.E., Powell, A.K., Sessoli, R.: Spin chirality in a molecular dysprosium triangle: The archetype of the noncollinear Ising model. Phys. Rev. Lett. 100, 247205 (2008). https://doi.org/10.1103/PhysRevLett.100.247205

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y.X., Shi, W., Li, H., Song, Y., Fang, L., Lan, Y., Powell, A.K., Wernsdorfer, W., Ungur, L., Chibotaru, L.F., Shen, M., Cheng, P.: A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. Chem. Sci. 3, 3366–3370 (2012). https://doi.org/10.1039/C2SC21023A

    Article  CAS  Google Scholar 

  21. Guo, P.-H., Liu, J.-L., Zhang, Z.-M., Ungur, L., Chibotaru, L.F., Leng, J.-D., Guo, F.-S., Tong, M.-L.: The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg. Chem. 51, 1233–1235 (2012). https://doi.org/10.1021/ic202650f

    Article  CAS  PubMed  Google Scholar 

  22. Gusev, A., Herchel, R., Nemec, I., Shul’gin, V., Eremenko, I.L., Lyssenko, K., Linert, W., Trávníček, Z.: Tetranuclear lanthanide complexes containing a hydrazone-type ligand. Dysprosium [2 × 2] gridlike single-molecule magnet and toroic. Inorg. Chem. 55, 12470–12476 (2016). https://doi.org/10.1021/acs.inorgchem.6b02449

    Article  CAS  PubMed  Google Scholar 

  23. Langley, S.K., Moubaraki, B., Forsyth, C.M., Gass, I.A., Murray, K.S.: Structure and magnetism of new lanthanide 6-wheel compounds utilizing triethanolamine as a stabilizing ligand. Dalton Trans. 39, 1705–1708 (2010). https://doi.org/10.1039/B921843B

    Article  CAS  PubMed  Google Scholar 

  24. Ungur, L., Langley, S.K., Hooper, T.N., Moubaraki, B., Brechin, E.K., Murray, K.S., Chibotaru, L.F.: Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring. J. Am. Chem. Soc. 134, 18554–18557 (2012). https://doi.org/10.1021/ja309211d

    Article  CAS  PubMed  Google Scholar 

  25. Garcia, G.F., Guettas, D., Montigaud, V., Larini, P., Sessoli, R., Totti, F., Cador, O., Pilet, G., Guennic, B.L.: A Dy4 cubane: A new member in the single-molecule toroics family. Angew. Chem. Int. Ed. 57, 17089–17093 (2018). https://doi.org/10.1002/anie.201810156

    Article  CAS  Google Scholar 

  26. Zhang, Q., Baker, M.L., Li, S., Sarachik, M.P., Baldoví, J.J., Gaita-Ariño, A., Coronado, E., Alexandropoulosg, D.I., Stamatatos, T.C.: Experimental determination of single molecule toroic behaviour in a Dy8 single molecule magnet. Nanoscale. 11, 15131–15138 (2019). https://doi.org/10.1039/C9NR05182A

    Article  CAS  PubMed  Google Scholar 

  27. Lin, S.-Y., Wernsdorfer, W., Ungur, L., Powell, A.K., Guo, Y.-N., Tang, J., Zhao, L., Chibotaru, L.F., Zhang, H.-J.: Coupling Dy3 triangles to maximize the toroidal moment. Angew. Chem. Int. Ed. 51, 12767–12771 (2012). https://doi.org/10.1002/anie.201206602

    Article  CAS  Google Scholar 

  28. Zhong, L., Chen, W.-B., OuYang, Z.-J., Yang, M., Zhang, Y.-Q., Gao, S., Schulze, M., Wernsdorfer, W., Dong, W.: Unprecedented one-dimensional chain and two-dimensional network dysprosium(iii) single-molecule toroics with white-light emission. Chem. Commun. 56, 2590–2593 (2020). https://doi.org/10.1039/C9CC08852K

    Article  CAS  Google Scholar 

  29. Vignesh, K.R., Soncini, A., Langley, S.K., Wernsdorfer, W., Murray, K.S., Rajaraman, G.: Ferrotoroidic ground state in a heterometallic {CrIIIDyIII 6} complex displaying slow magnetic relaxation. Nat. Commun. 8, 1023 (2017). https://doi.org/10.1038/s41467-017-01102-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vignesh, K.R., Langley, S.K., Moubaraki, B., Murray, K.S., Rajaraman, G.: Large hexadecametallic {MnIII-LnIII} wheels: Synthesis, structural, magnetic, and theoretical characterization. Chem. Eur. J. 21, 16364–16369 (2015). https://doi.org/10.1002/chem.201503424

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H.-L., Zhai, Y.-Q., Qin, L., Ungur, L., Nojiri, H., Zheng, Y.-Z.: Single-molecule toroic design through magnetic exchange-coupling. Matter. 2, 1481–1493 (2020). https://doi.org/10.1016/j.matt.2020.02.021

    Article  Google Scholar 

  32. Kaemmerer, H., Baniodeh, A., Peng, Y., Moreno-Pineda, E., Schulze, M., Anson, C.E., Wernsdorfer, W., Schnack, J., Powell, A.K.: Inorganic approach to stabilizing nanoscale toroidicity in a Tetraicosanuclear Fe18Dy6 single molecule magnet. J. Am. Chem. Soc. 142, 14838–14842 (2020). https://doi.org/10.1021/jacs.0c07168

    Article  CAS  PubMed  Google Scholar 

  33. Novitchi, G., Pilet, G., Ungur, L., Moshchalkov, V.V., Wernsdorfer, W., Chibotaru, L.F., Luneau, D., Powell, A.K.: Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3 single molecule magnets. Chem. Sci. 3, 1169–1176 (2012). https://doi.org/10.1039/C2SC00728B

    Article  CAS  Google Scholar 

  34. Wu, J., Li, X.-L., Guo, M., Zhao, L., Zhang, Y.-Q., Tang, J.: Realization of toroidal magnetic moments in heterometallic 3d-4f metallocycles. Chem. Commun. 54, 1065–1068 (2018). https://doi.org/10.1039/C7CC09391H

    Article  CAS  Google Scholar 

  35. Ashtree, J.M., Borilović, I., Vignesh, K.R., Swain, A., Hamilton, S.H., Whyatt, Y.L., Benjamin, S.L., Phonsri, W., Forsyth, C.M., Wernsdorfer, W., Soncini, A., Rajaraman, G., Langley, S.K., Murray, K.S.: Tuning the ferrotoroidic coupling and magnetic hysteresis in double-triangle complexes {Dy3MIIIDy3} via the MIII-linker. Eur. J. Inorg. Chem. 2021, 435–444 (2021). https://doi.org/10.1002/ejic.202001082

    Article  CAS  Google Scholar 

  36. Rinehart, J.D., Fang, M., Evans, W.J., Long, J.R.: Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat. Chem. 3, 538–542 (2011). https://doi.org/10.1038/nchem.1063

    Article  CAS  PubMed  Google Scholar 

  37. Alexandropoulos, D.I., Dolinar, B.S., Vignesh, K.R., Dunbar, K.R.: Putting a new spin on supramolecular metallacycles: Co3 triangle and Co4 square bearing tetrazine-based radicals as bridges. J. Am. Chem. Soc. 139, 11040–11043 (2017). https://doi.org/10.1021/jacs.7b06925

    Article  CAS  PubMed  Google Scholar 

  38. Gould, C.A., Darago, L.E., Gonzalez, M.I., Demir, S., Long, J.R.: A trinuclear radical-bridged lanthanide single-molecule magnet. Angew. Chem. Int. Ed. 56, 10103–10107 (2017). https://doi.org/10.1002/anie.201612271

    Article  CAS  Google Scholar 

  39. Dolinar, B.S., Alexandropoulos, D.I., Vignesh, K.R., James, T.’.A., Dunbar, K.R., Lanthanide triangles supported by radical bridging ligands: J. Am. Chem. Soc. 140, 908–911 (2018). https://doi.org/10.1021/jacs.7b12495

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Wang, C., Huang, H., Lu, J., Liang, R., Liu, J., Peng, R., Zhang, Q., Zhang, Q., Wang, J., Gu, L., Han, X.F., Chen, L.Q., Ramesh, R., Nan, C.W., Zhang, J.: Deterministic reversal of single magnetic vortex circulation by an electric field. Sci. Bull. 65, 1260–1267 (2020). https://doi.org/10.1016/j.scib.2020.04.008

    Article  Google Scholar 

  41. Li, X.L., Tang, J.: Recent developments in single-molecule toroics. Dalton Trans. 48, 15358–15370 (2019). https://doi.org/10.1039/C9DT02113B

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Zhen Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, HL., Zhai, YQ., Zheng, YZ. (2022). Rationalization of Room-Temperature Single-Molecule Toroics via Exchange Coupling. In: Murray, K. (eds) Single Molecule Toroics. Springer, Cham. https://doi.org/10.1007/978-3-031-11709-1_4

Download citation

Publish with us

Policies and ethics