Skip to main content

Imaging and Radiological Interventions in the Pediatric Urinary Tract

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The care of children with diseases of the kidney and urinary tract frequently involves the use of a variety of imaging modalities, both for diagnostic and treatment purposes. This chapter will provide an overview of the radiologic studies and interventions often used in pediatric nephrology, including radiography, excretory urography, contrast fluoroscopy, ultrasonography, computed tomography, magnetic resonance imaging, nuclear scintigraphy, and interventional radiology techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhn JP, Slovis TL, Haller JO, Caffey J. Caffey’s pediatric diagnostic imaging. 10th ed. Philadelphia, PA: Mosby; 2004.

    Google Scholar 

  2. Thurman J, Gueler F. Recent advances in renal imaging. F1000Research. 2018;7 https://doi.org/10.12688/f1000research.16188.1.

  3. Dillman JR, Trout AT, Smith EA, Towbin AJ. Hereditary renal cystic disorders: imaging of the kidneys and beyond. Radiographics. 2017;37:924–46. https://doi.org/10.1148/rg.2017160148.

    Article  PubMed  Google Scholar 

  4. Viteri B, Calle-Toro JS, Furth S, et al. State-of-the-art renal imaging in children. Pediatrics. 2020;145 https://doi.org/10.1542/peds.2019-0829.

  5. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96. https://doi.org/10.2214/ajr.176.2.1760289.

    Article  CAS  PubMed  Google Scholar 

  6. Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283–90. https://doi.org/10.2214/AJR.12.9720.

    Article  PubMed  Google Scholar 

  7. Mettler FA, Bhargavan M, Faulkner K, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950-2007. Radiology. 2009;253:520–31. https://doi.org/10.1148/radiol.2532082010.

    Article  PubMed  Google Scholar 

  8. Brown PH, Silberberg PJ, Thomas RD, et al. A multihospital survey of radiation exposure and image quality in pediatric fluoroscopy. Pediatr Radiol. 2000;30:236–42. https://doi.org/10.1007/s002470050729.

    Article  CAS  PubMed  Google Scholar 

  9. Mahesh M. The AAPM/RSNA physics tutorial for residents. Fluoroscopy: patient radiation exposure issues. Radiographics. 2001;21:1033–45. https://doi.org/10.1148/radiographics.21.4.g01jl271033.

    Article  CAS  PubMed  Google Scholar 

  10. Brown Robert D, Thomas Phillip J, Silberberg Linda M, Johnson PH, Brown PH, Thomas RD, et al. Optimization of a fluoroscope to reduce radiation exposure in pediatric imaging. Springer; 2000.

    Google Scholar 

  11. Boland GWL, Murphy B, Arellano R, et al. Dose reduction in gastrointestinal and genitourinary fluoroscopy: use of grid-controlled pulsed fluoroscopy. AJR Am J Roentgenol. 2000;175:1453–7.

    Article  CAS  PubMed  Google Scholar 

  12. Nagayama Y, Oda S, Nakaura T, et al. Radiation dose reduction at pediatric CT: use of low tube voltage and iterative reconstruction. Radiographics. 2018;38:1421–40. https://doi.org/10.1148/rg.2018180041.

    Article  PubMed  Google Scholar 

  13. Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167:700–7. https://doi.org/10.1001/jamapediatrics.2013.311.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hollingsworth C, Frush DP, Cross M, Lucaya J. Helical CT of the body: a survey of techniques used for pediatric patients. Am J Roentgenol. 2003;180:401–6. https://doi.org/10.2214/ajr.180.2.1800401.

    Article  Google Scholar 

  15. Siegel MJ, Schmidt B, Bradley D, et al. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology. 2004;233:515–22. https://doi.org/10.1148/radiol.2332032107.

    Article  PubMed  Google Scholar 

  16. Chen CY, Hsu JS, Jaw TS, et al. Split-Bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. Am J Roentgenol. 2015;205:W492–501. https://doi.org/10.2214/AJR.14.13687.

    Article  Google Scholar 

  17. Morcos SK, Thomsen HS. Adverse reactions to iodinated contrast media. Eur Radiol. 2001;11:1267–75.

    Article  CAS  PubMed  Google Scholar 

  18. Lameier NH. Contrast-induced nephropathy—prevention and risk reduction. Nephrol Dial Transpl. 2006;21:i11–23.

    Article  Google Scholar 

  19. Rao QA, Newhouse JH. Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis. Radiology. 2006;239:392–7. https://doi.org/10.1148/radiol.2392050413.

    Article  PubMed  Google Scholar 

  20. Aycock RD, Westafer LM, Boxen JL, et al. Acute kidney injury after computed tomography: a meta-analysis. Ann Emerg Med. 2018;71:44–53.e4. https://doi.org/10.1016/j.annemergmed.2017.06.041.

    Article  PubMed  Google Scholar 

  21. Sinert R, Brandler E, Subramanian RA, Miller AC. Does the current definition of contrast-induced acute kidney injury reflect a true clinical entity? Acad Emerg Med. 2012;19:1261–7. https://doi.org/10.1111/acem.12011.

    Article  PubMed  Google Scholar 

  22. Hinson JS, Ehmann MR, Fine DM, et al. Risk of acute kidney injury after intravenous contrast media administration. Ann Emerg Med. 2017;69:577–586.e4. https://doi.org/10.1016/j.annemergmed.2016.11.021.

    Article  PubMed  Google Scholar 

  23. McDonald JS, McDonald RJ, Tran CL, et al. Postcontrast acute kidney injury in pediatric patients: a cohort study. Am J Kidney Dis. 2018;72:811–8. https://doi.org/10.1053/j.ajkd.2018.05.014.

    Article  PubMed  Google Scholar 

  24. Gilligan LA, Davenport MS, Trout AT, et al. Risk of acute kidney injury following contrast-enhanced CT in hospitalized pediatric patients: a propensity score analysis. Radiology. 2020;294:548–56. https://doi.org/10.1148/radiol.2020191931.

    Article  PubMed  Google Scholar 

  25. Fujisaki K, Ono-Fujisaki A, Kura-Nakamura N, et al. Rapid deterioration of renal insufficiency after magnetic resonance imaging with gadolinium-based contrast agent. Clin Nephrol. 2011;75:251–4. https://doi.org/10.5414/cnp75251.

    Article  CAS  PubMed  Google Scholar 

  26. Rudnick MR, Wahba IM, Leonberg-Yoo AK, et al. Risks and options with gadolinium-based contrast agents in patients with CKD: a review. Am J Kidney Dis. 2021;77:517–28. https://doi.org/10.1053/j.ajkd.2020.07.012.

    Article  CAS  PubMed  Google Scholar 

  27. Thomsen HS, Morcos SK, Almen T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2013;23:307–18. https://doi.org/10.1007/s00330-012-2597-9.

    Article  PubMed  Google Scholar 

  28. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  29. Prybylski JP, Jay M. The impact of excess ligand on the retention of nonionic, linear gadolinium-based contrast agents in patients with various levels of renal dysfunction: a review and simulation analysis. Adv Chronic Kidney Dis. 2017;24:176–82. https://doi.org/10.1053/j.ackd.2017.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Holowka S, Shroff M, Chavhan GB. Use and safety of gadolinium based contrast agents in pediatric MR imaging. Indian J Pediatr. 2019; https://doi.org/10.1007/s12098-019-02891-x.

  31. Gulani V, Calamante F, Shellock FG, et al. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16:564–70. https://doi.org/10.1016/S1474-4422(17)30158-8.

    Article  PubMed  Google Scholar 

  32. Akgun H, Gonlusen G, Cartwright J, et al. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med. 2006;130:1354–7. https://doi.org/10.1043/1543-2165(2006)130[1354:AGCMNA]2.0.CO;2.

    Article  PubMed  Google Scholar 

  33. Li A, Wong CS, Wong MK, et al. Acute adverse reactions to magnetic resonance contrast media—gadolinium chelates. Br J Radiol. 2006;79:368–71.

    Article  CAS  PubMed  Google Scholar 

  34. Malviya S, Voepel-Lewis T, Eldevik OP, et al. Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth. 2000;84:743–8.

    Article  CAS  PubMed  Google Scholar 

  35. Frush DP, Bisset GS, Hall SC. Pediatric sedation in radiology: the practice of safe sleep. AJR Am J Roentgenol. 1996;167:1381–7. https://doi.org/10.2214/ajr.167.6.8956563.

    Article  CAS  PubMed  Google Scholar 

  36. Kurugol S, Seager CM, Thaker H, et al. Feed and wrap magnetic resonance urography provides anatomic and functional imaging in infants without anesthesia. J Pediatr Urol. 2020;16:116–20. https://doi.org/10.1016/j.jpurol.2019.11.002.

    Article  PubMed  Google Scholar 

  37. Peratoner L, Pennesi M, Bordugo A, et al. Kidney length and scarring in children with urinary tract infection: importance of ultrasound scans. Abdom Imaging. 2005;30:780–5.

    Article  CAS  PubMed  Google Scholar 

  38. Dacher JN, Hitzel A, Avni FE, Vera P. Imaging strategies in pediatric urinary tract infection. Eur Radiol. 2005;15:1283–8.

    Article  PubMed  Google Scholar 

  39. Subcommittee on Urinary Tract Infection Steering Committee on Quality Improvement and Management, Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128:595–610. https://doi.org/10.1542/peds.2011-1330.

    Article  Google Scholar 

  40. Monsalve J, Kapur J, Malkin D, Babyn PS. Imaging of cancer predisposition syndromes in children. Radiographics. 2011;31:263–80. https://doi.org/10.1148/rg.311105099.

    Article  PubMed  Google Scholar 

  41. Chen JJ, Pugach J, Patel M, et al. The renal length nomogram: multivariable approach. J Urol. 2002;168:2149–52. https://doi.org/10.1097/01.ju.0000033905.64110.91.

    Article  PubMed  Google Scholar 

  42. Blane CE, Bookstein FL, DiPietro MA, Kelsch RC. Sonographic standards for normal infant kidney length. AJR Am J Roentgenol. 1985;145:1289–91. https://doi.org/10.2214/ajr.145.6.1289.

    Article  CAS  PubMed  Google Scholar 

  43. Rosenbaum DM, Korngold E, Teele RL. Sonographic assessment of renal length in normal children. AJR Am J Roentgenol. 1984;142:467–9.

    Article  CAS  PubMed  Google Scholar 

  44. Ginalski JM, Michaud A, Genton N. Renal growth retardation in children: sign suggestive of vesicoureteral reflux? AJR Am J Roentgenol. 1985;145:617–9. https://doi.org/10.2214/ajr.145.3.617.

    Article  CAS  PubMed  Google Scholar 

  45. Hricak H, Slovis TL, Callen CW, et al. Neonatal kidneys: sonographic anatomic correlation. Radiology. 1983;147:699–702.

    Article  CAS  PubMed  Google Scholar 

  46. Haller JO, Berdon WE, Friedman AP. Increased renal cortical echogenicity: a normal finding in neonates and infants. Radiology. 1982;142:173–4.

    Article  CAS  PubMed  Google Scholar 

  47. Starinsky R, Vardi O, Batasch D, Goldberg M. Increased renal medullary echogenicity in neonates. Pediatr Radiol. 1995;25(Suppl 1):S43–5.

    Article  PubMed  Google Scholar 

  48. Nimkin K, Lebowitz RL, Share JC, Teele RL. Urolithiasis in a children’s hospital: 1985-1990. Urol Radiol. 1992;14:139–43.

    Article  CAS  PubMed  Google Scholar 

  49. Ricci MA, Lloyd DA. Renal venous thrombosis in infants and children. Arch Surg. 1990;125:1195–9.

    Article  CAS  PubMed  Google Scholar 

  50. Brun P, Kchouk H, Mouchet B, et al. Value of Doppler ultrasound for the diagnosis of renal artery stenosis in children. Pediatr Nephrol. 1997;11:27–30. https://doi.org/10.1007/s004670050227.

    Article  CAS  PubMed  Google Scholar 

  51. Fang YC, Tiu CM, Chou YH, Chang T. A case of acute renal artery thrombosis caused by blunt trauma: computed tomographic and Doppler ultrasonic findings. J Formos Med Assoc. 1993;92:356–8.

    CAS  PubMed  Google Scholar 

  52. Hitzel A, Liard A, Vera P, et al. Color and power Doppler sonography versus DMSA scintigraphy in acute pyelonephritis and in prediction of renal scarring. J Nucl Med. 2002;43:27–32.

    PubMed  Google Scholar 

  53. Irshad A, Ackerman SJ, Campbell AS, Anis M. An overview of renal transplantation: current practice and use of ultrasound. Semin Ultrasound CT MR. 2009;30:298–314.

    Article  PubMed  Google Scholar 

  54. Sharma AK, Rustom R, Evans A, et al. Utility of serial Doppler ultrasound scans for the diagnosis of acute rejection in renal allografts. Transpl Int. 2004;17:138–44.

    Article  PubMed  Google Scholar 

  55. McArthur C, Baxter GM. Current and potential renal applications of contrast-enhanced ultrasound. Clin Radiol. 2012;67:909–22. https://doi.org/10.1016/j.crad.2012.01.017.

    Article  CAS  PubMed  Google Scholar 

  56. Huang DY, Yusuf GT, Daneshi M, et al. Contrast-enhanced ultrasound (CEUS) in abdominal intervention. Abdom Radiol. 2018;43:960–76. https://doi.org/10.1007/s00261-018-1473-8.

    Article  Google Scholar 

  57. Bertolotto M, Bucci S, Valentino M, et al. Contrast-enhanced ultrasound for characterizing renal masses. Eur J Radiol. 2018;105:41–8. https://doi.org/10.1016/j.ejrad.2018.05.015.

    Article  PubMed  Google Scholar 

  58. Valentino M, Serra C, Zironi G, et al. Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries. AJR Am J Roentgenol. 2006;186:1361–7. https://doi.org/10.2214/AJR.05.0027.

    Article  PubMed  Google Scholar 

  59. Fetzer DT, Flanagan J, Nabhan A, et al. Impact of implementing contrast-enhanced ultrasound for antegrade nephrostogram after percutaneous nephrolithotomy. J Ultrasound Med. 2021;40:101–11. https://doi.org/10.1002/jum.15380.

    Article  PubMed  Google Scholar 

  60. Pan F-S, Liu M, Luo J, et al. Transplant renal artery stenosis: evaluation with contrast-enhanced ultrasound. Eur J Radiol. 2017;90:42–9. https://doi.org/10.1016/j.ejrad.2017.02.031.

    Article  PubMed  Google Scholar 

  61. Barr RG, Peterson C, Hindi A. Evaluation of indeterminate renal masses with contrast-enhanced US: a diagnostic performance study. Radiology. 2014;271:133–42. https://doi.org/10.1148/radiol.13130161.

    Article  PubMed  Google Scholar 

  62. Paudice N, Zanazzi M, Agostini S, et al. Contrast-enhanced ultrasound assessment of complex cystic lesions in renal transplant recipients with acquired cystic kidney disease: preliminary experience. Transplant Proc. 2012;44:1928–9. https://doi.org/10.1016/j.transproceed.2012.06.033.

    Article  CAS  PubMed  Google Scholar 

  63. Mueller-Peltzer K, Negrão de Figueiredo G, Fischereder M, et al. Vascular rejection in renal transplant: diagnostic value of contrast-enhanced ultrasound (CEUS) compared to biopsy. Clin Hemorheol Microcirc. 2018;69:77–82. https://doi.org/10.3233/CH-189115.

    Article  CAS  PubMed  Google Scholar 

  64. Benozzi L, Cappelli G, Granito M, et al. Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc. 2009;41:1214–5. https://doi.org/10.1016/j.transproceed.2009.03.029.

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez CP, Ripolles T, Martinez MJ, et al. Diagnosis of acute cortical necrosis in renal transplantation by contrast-enhanced ultrasound: a preliminary experience. Ultraschall Med. 2013;34:340–4. https://doi.org/10.1055/s-0032-1313007.

    Article  CAS  PubMed  Google Scholar 

  66. Mori G, Granito M, Favali D, Cappelli G. Long-term prognostic impact of contrast-enhanced ultrasound and power doppler in renal transplantation. Transplant Proc. 2015;47:2139–41. https://doi.org/10.1016/j.transproceed.2014.11.080.

    Article  CAS  PubMed  Google Scholar 

  67. Gokli A, Pinto E, Escobar FA, et al. Contrast-enhanced ultrasound: use in the management of lymphorrhea in generalized lymphatic anomaly. J Vasc Interv Radiol. 2020;31:1511–3. https://doi.org/10.1016/j.jvir.2020.05.001.

    Article  PubMed  Google Scholar 

  68. Yang WQ, Mou S, Xu Y, et al. Quantitative parameters of contrast-enhanced ultrasonography for assessment of renal pathology: a preliminary study in chronic kidney disease. Clin Hemorheol Microcirc. 2018;68:71–82. https://doi.org/10.3233/CH-170303.

    Article  PubMed  Google Scholar 

  69. Yang C, Wu S, Yang P, et al. Prediction of renal allograft chronic rejection using a model based on contrast-enhanced ultrasonography. Microcirculation. 2019;1–9 https://doi.org/10.1111/micc.12544.

  70. Papadopoulou F, Ntoulia A, Siomou E, Darge K. Contrast-enhanced voiding urosonography with intravesical administration of a second-generation ultrasound contrast agent for diagnosis of vesicoureteral reflux: prospective evaluation of contrast safety in 1,010 children. Pediatr Radiol. 2014;44:719–28. https://doi.org/10.1007/s00247-013-2832-9.

    Article  PubMed  Google Scholar 

  71. Riccabona M, Vivier P-H, Ntoulia A, et al. ESPR uroradiology task force imaging recommendations in paediatric uroradiology, part VII: standardised terminology, impact of existing recommendations, and update on contrast-enhanced ultrasound of the paediatric urogenital tract. Pediatr Radiol. 2014;44:1478–84. https://doi.org/10.1007/s00247-014-3135-5.

    Article  PubMed  Google Scholar 

  72. Duran C, Beltrán VP, González A, et al. Contrast-enhanced voiding urosonography for vesicoureteral reflux diagnosis in children. Radiographics. 2017;37:1854–69. https://doi.org/10.1148/rg.2017170024.

    Article  PubMed  Google Scholar 

  73. Darge K, Troeger J. Vesicoureteral reflux grading in contrast-enhanced voiding urosonography. Eur J Radiol. 2002;43:122–8. https://doi.org/10.1016/S0720-048X(02)00114-6.

    Article  PubMed  Google Scholar 

  74. Papadopoulou F, Anthopoulou A, Siomou E, et al. Harmonic voiding urosonography with a second-generation contrast agent for the diagnosis of vesicoureteral reflux. Pediatr Radiol. 2009;39:239–44. https://doi.org/10.1007/s00247-008-1080-x.

    Article  PubMed  Google Scholar 

  75. Darge K. Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. II. Comparison with radiological examinations. Pediatr Radiol. 2008;38:54–63; quiz 126–7. https://doi.org/10.1007/s00247-007-0528-8.

    Article  PubMed  Google Scholar 

  76. Grover S, Patra S, Grover H, Kumar A. Contrast-enhanced voiding urosonography (CEVUS) as a novel technique for evaluation in a case of male urethral diverticulum. Indian J Radiol Imaging. 2020;30:409. https://doi.org/10.4103/ijri.IJRI_50_20.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Woźniak MM, Osemlak P, Pawelec A, et al. Intraoperative contrast-enhanced urosonography during endoscopic treatment of vesicoureteral reflux in children. Pediatr Radiol. 2014;44:1093–100. https://doi.org/10.1007/s00247-014-2963-7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rosado E, Riccabona M. Off-label use of ultrasound contrast agents for intravenous applications in children: analysis of the existing literature. J Ultrasound Med. 2016;35:487–96. https://doi.org/10.7863/ultra.15.02030.

    Article  PubMed  Google Scholar 

  79. Yusuf GT, Sellars ME, Deganello A, et al. Retrospective analysis of the safety and cost implications of pediatric contrast-enhanced ultrasound at a single center. AJR Am J Roentgenol. 2017;208:446–52. https://doi.org/10.2214/AJR.16.16700.

    Article  PubMed  Google Scholar 

  80. Mao M, Xia B, Chen W, et al. The safety and effectiveness of intravenous contrast-enhanced sonography in Chinese children-a single center and prospective study in China. Front Pharmacol. 2019;10:1447. https://doi.org/10.3389/fphar.2019.01447.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Knieling F, Strobel D, Rompel O, et al. Spectrum, applicability and diagnostic capacity of contrast-enhanced ultrasound in pediatric patients and young adults after intravenous application—a retrospective trial. Ultraschall der Medizin—Eur J Ultrasound. 2016;37:619–26. https://doi.org/10.1055/s-0042-108429.

    Article  CAS  Google Scholar 

  82. Torres A, Koskinen SK, Gjertsen H, Fischler B. Contrast-enhanced ultrasound using sulfur hexafluoride is safe in the pediatric setting. Acta Radiol. 2017;58:1395–9. https://doi.org/10.1177/0284185117690423.

    Article  PubMed  Google Scholar 

  83. Wang X, Yu Z, Guo R, et al. Assessment of postoperative perfusion with contrast-enhanced ultrasonography in kidney transplantation. Int J Clin Exp Med. 2015;8:18399–405.

    PubMed  PubMed Central  Google Scholar 

  84. Bracco Diagnostics Inc. LUMASON prescribing information (PDF). https://imaging.bracco.com/sites/braccoimaging.com/files/technica_sheet_pdf/us-en-2017-01-04-spc-lumason.pdf. Accessed 22 Jun 2021.

  85. European Medicines Agency SonoVue. https://www.ema.europa.eu/en/medicines/human/EPAR/sonovue. Accessed 22 Jun 2021.

  86. Fotter R. Pediatric uroradiology. New York: Springer; 2001.

    Book  Google Scholar 

  87. Ward VL. Patient dose reduction during voiding cystourethrography. Pediatr Radiol. 2006;36(Suppl 2):168–72. https://doi.org/10.1007/s00247-006-0213-3.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lebowitz RL, Olbing H, Parkkulainen KV, et al. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol. 1985;15:105–9.

    Article  CAS  PubMed  Google Scholar 

  89. Unver T, Alpay H, Biyikli NK, Ones T. Comparison of direct radionuclide cystography and voiding cystourethrography in detecting vesicoureteral reflux. Pediatr Int. 2006;48:287–91. https://doi.org/10.1111/j.1442-200X.2006.02206.x.

    Article  PubMed  Google Scholar 

  90. Sükan A, Bayazit AK, Kibar M, et al. Comparison of direct radionuclide cystography and voiding direct cystography in the detection of vesicoureteral reflux. Ann Nucl Med. 2003;17:549–53. https://doi.org/10.1007/BF03006667.

    Article  PubMed  Google Scholar 

  91. Fettich J, Colarinha P, Fischer S, et al. Guidelines for direct radionuclide cystography in children. Eur J Nucl Med Mol Imaging. 2003;30:B39–44. https://doi.org/10.1007/s00259-003-1137-x.

    Article  PubMed  Google Scholar 

  92. Carpio F, Morey AF. Radiographic staging of renal injuries. World J Urol. 1999;17:66–70. https://doi.org/10.1007/s003450050108.

    Article  CAS  PubMed  Google Scholar 

  93. Peters AM, Morony S, Gordon I. Indirect radionuclide cystography demonstrates reflux under physiological conditions. Clin Radiol. 1990;41:44–7.

    Article  CAS  PubMed  Google Scholar 

  94. Gordon I, Peters AM, Morony S. Indirect radionuclide cystography: a sensitive technique for the detection of vesico-ureteral reflux. Pediatr Nephrol. 1990;4:604–6. https://doi.org/10.1007/BF00858633.

    Article  CAS  PubMed  Google Scholar 

  95. Gordon I. Indirect radionuclide cystography—the coming of age. Nucl Med Commun. 1989;10:457–8. https://doi.org/10.1097/00006231-198907000-00001.

    Article  CAS  PubMed  Google Scholar 

  96. Pollet JE, Sharp PF, Smith FW. Comparison of “direct” and “indirect” radionuclide cystography. J Nucl Med. 1985;26:1501–2.

    CAS  PubMed  Google Scholar 

  97. Bower G, Lovegrove FT, Geijsel H, et al. Comparison of “direct” and “indirect” radionuclide cystography. J Nucl Med. 1985;26:465–8.

    CAS  PubMed  Google Scholar 

  98. Pollet JE, Sharp PF, Smith FW, et al. Intravenous radionuclide cystography for the detection of vesicorenal reflux. J Urol. 1981;125:75–8.

    Article  CAS  PubMed  Google Scholar 

  99. Conway JJ, Kruglik GD. Effectiveness of direct and indirect radionuclide cystography in detecting vesicoureteral reflux. J Nucl Med. 1976;17:81–3.

    CAS  PubMed  Google Scholar 

  100. Conway JJ, Belman AB, King LR, Filmer RB. Direct and indirect radionuclide cystography. J Urol. 1975;113:689–93. https://doi.org/10.1016/s0022-5347(17)59554-3.

    Article  CAS  PubMed  Google Scholar 

  101. Conway JJ, Belman AB, King LR. Direct and indirect radionuclide cystography. Semin Nucl Med. 1974;4:197–211. https://doi.org/10.1016/s0001-2998(74)80008-5.

    Article  CAS  PubMed  Google Scholar 

  102. Gordon I, Colarinha P, Fettich J, et al. Guidelines for indirect radionuclide cystography. Eur J Nucl Med. 2001;28:BP16–20.

    CAS  PubMed  Google Scholar 

  103. Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med. 2006;36:16–35.

    Article  PubMed  Google Scholar 

  104. De Sadeleer C, De Boe V, Keuppens F, et al. How good is technetium-99m mercaptoacetyltriglycine indirect cystography? Eur J Nucl Med. 1994;21:223–7. https://doi.org/10.1007/BF00188670.

    Article  PubMed  Google Scholar 

  105. Corso A, Ostinelli A, Trombetta MA. [“Indirect” radioisotope cystography after the furosemide test: its diagnostic efficacy compared to “direct” study]. Radiol Med. 1989;78:645–8.

    Google Scholar 

  106. Vlajković M, Ilić S, Bogićević M, et al. Radionuclide voiding patterns in children with vesicoureteral reflux. Eur J Nucl Med Mol Imaging. 2003;30:532–7. https://doi.org/10.1007/s00259-002-1077-x.

    Article  CAS  PubMed  Google Scholar 

  107. Mandell GA, Eggli DF, Gilday DL, et al. Procedure guideline for radionuclide cystography in children. Society of Nuclear Medicine. J Nucl Med. 1997;38:1650–4.

    CAS  PubMed  Google Scholar 

  108. Hoberman A, Charron M, Hickey RW, et al. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med. 2003;348:195–202.

    Article  PubMed  Google Scholar 

  109. Stokland E, Hellstrom M, Jakobsson B, Sixt R. Imaging of renal scarring. Acta Paediatr Suppl. 1999;88:13–21.

    Article  CAS  PubMed  Google Scholar 

  110. Goldraich NP, Goldraich IH. Update on dimercaptosuccinic acid renal scanning in children with urinary tract infection. Pediatr Nephrol. 1995;9:221–6; discussion 227. https://doi.org/10.1007/BF00860755.

    Article  CAS  PubMed  Google Scholar 

  111. Mastin ST, Drane WE, Iravani A. Tc-99m DMSA SPECT imaging in patients with acute symptoms or history of UTI. Comparison with ultrasonography. Clin Nucl Med. 1995;20:407–12.

    Article  CAS  PubMed  Google Scholar 

  112. Majd M, Nussbaum Blask AR, Markle BM, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power Doppler US in an experimental pig model. Radiology. 2001;218:101–8.

    Article  CAS  PubMed  Google Scholar 

  113. Applegate KE, Connolly LP, Davis RT, et al. A prospective comparison of high-resolution planar, pinhole, and triple-detector SPECT for the detection of renal cortical defects. Clin Nucl Med. 1997;22:673–8. https://doi.org/10.1097/00003072-199710000-00002.

    Article  CAS  PubMed  Google Scholar 

  114. Cook GJ, Lewis MK, Clarke SE. An evaluation of 99Tcm-DMSA SPET with three-dimensional reconstruction in 68 patients with varied renal pathology. Nucl Med Commun. 1995;16:958–67. https://doi.org/10.1097/00006231-199511000-00012.

    Article  CAS  PubMed  Google Scholar 

  115. Yen TC, Chen WP, Chang SL, et al. A comparative study of evaluating renal scars by 99mTc-DMSA planar and SPECT renal scans, intravenous urography, and ultrasonography. Ann Nucl Med. 1994;8:147–52. https://doi.org/10.1007/BF03165020.

    Article  CAS  PubMed  Google Scholar 

  116. Takeda M, Katayama Y, Tsutsui T, et al. Value of dimercaptosuccinic acid single photon emission computed tomography and magnetic resonance imaging in detecting renal injury in pediatric patients with vesicoureteral reflux. Comparison with dimercaptosuccinic acid planar scintigraphy and intraven. Eur Urol. 1994;25:320–5.

    Article  CAS  PubMed  Google Scholar 

  117. Mouratidis B, Ash JM, Gilday DL. Comparison of planar and SPECT 99Tcm-DMSA scintigraphy for the detection of renal cortical defects in children. Nucl Med Commun. 1993;14:82–6.

    Article  CAS  PubMed  Google Scholar 

  118. Sheehy N, Tetrault TA, Zurakowski D, et al. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Radiology. 2009;251:511–6. https://doi.org/10.1148/radiol.2512081440.

    Article  PubMed  Google Scholar 

  119. Piepsz A, Blaufox MD, Gordon I, et al. Consensus on renal cortical scintigraphy in children with urinary tract infection. Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med. 1999;29:160–74.

    Article  CAS  PubMed  Google Scholar 

  120. Itoh K, Yamashita T, Tsukamoto E, et al. Qualitative and quantitative evaluation of renal parenchymal damage by 99mTc-DMSA planar and SPECT scintigraphy. Ann Nucl Med. 1995;9:23–8.

    Article  CAS  PubMed  Google Scholar 

  121. Dhull RS, Joshi A, Saha A. Nuclear imaging in pediatric kidney diseases. Indian Pediatr. 2018;55:591–7.

    Article  PubMed  Google Scholar 

  122. Craig JC, Wheeler DM, Irwig L, Howman-Giles RB. How accurate is dimercaptosuccinic acid scintigraphy for the diagnosis of acute pyelonephritis? A meta-analysis of experimental studies. J Nucl Med. 2000;41:986–93.

    CAS  PubMed  Google Scholar 

  123. Chiou YY, Wang ST, Tang MJ, et al. Renal fibrosis: prediction from acute pyelonephritis focus volume measured at 99mTc dimercaptosuccinic acid SPECT. Radiology. 2001;221:366–70. https://doi.org/10.1148/radiol.2212010146.

    Article  CAS  PubMed  Google Scholar 

  124. Yen TC, Tzen KY, Lin WY, et al. Identification of new renal scarring in repeated episodes of acute pyelonephritis using Tc-99m DMSA renal SPECT. Clin Nucl Med. 1998;23:828–31. https://doi.org/10.1097/00003072-199812000-00008.

    Article  CAS  PubMed  Google Scholar 

  125. Yen TC, Chen WP, Chang SL, et al. Technetium-99m-DMSA renal SPECT in diagnosing and monitoring pediatric acute pyelonephritis. J Nucl Med. 1996;37:1349–53.

    CAS  PubMed  Google Scholar 

  126. Mettler FA, Guiberteau MJ. Essentials of nuclear medicine imaging. 5th ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  127. Ell PJ, Gambhir SS. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. Edinburgh: Chuchill Livingstone; 2004.

    Google Scholar 

  128. Mandell GA, Cooper JA, Leonard JC, et al. Procedure guideline for diuretic renography in children. Society of Nuclear Medicine. J Nucl Med. 1997;38:1647–50.

    CAS  PubMed  Google Scholar 

  129. Rossleigh MA. Renal cortical scintigraphy and diuresis renography in infants and children. J Nucl Med. 2001;42:91–5.

    CAS  PubMed  Google Scholar 

  130. McCarthy CS, Sarkar SD, Izquierdo G, et al. Pitfalls and limitations of diuretic renography. Abdom Imaging. 1994;19:78–81.

    Article  CAS  PubMed  Google Scholar 

  131. Conway JJ, Maizels M. The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. A report from combined meetings of The Society for Fetal Urology and members of The Pediatric Nuclear Medicine Counc. J Nucl Med. 1992;33:2047–51.

    CAS  PubMed  Google Scholar 

  132. Donoso G, Kuyvenhoven JD, Ham H, Piepsz A. 99mTc-MAG3 diuretic renography in children: a comparison between F0 and F+20. Nucl Med Commun. 2003;24:1189–93. https://doi.org/10.1097/00006231-200311000-00010.

    Article  CAS  PubMed  Google Scholar 

  133. Wong DC, Rossleigh MA, Farnsworth RH. F+0 diuresis renography in infants and children. J Nucl Med. 1999;40:1805–11.

    CAS  PubMed  Google Scholar 

  134. Ramchandani P, Buckler PM. Imaging of genitourinary trauma. Am J Roentgenol. 2009;192:1514–23.

    Article  Google Scholar 

  135. Dane B, Baxter AB, Bernstein MP. Imaging genitourinary trauma. Radiol Clin N Am. 2017;55:321–35. https://doi.org/10.1016/j.rcl.2016.10.007.

    Article  PubMed  Google Scholar 

  136. Fernández-Ibieta M. Renal trauma in pediatrics: a current review. Urology. 2018;113:171–8.

    Article  PubMed  Google Scholar 

  137. Leung VJ, Grima M, Khan N, Jones HR. Early experience with a split-bolus single-pass CT protocol in paediatric trauma. Clin Radiol. 2017;72:497–501. https://doi.org/10.1016/j.crad.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  138. Jeavons C, Hacking C, Beenen LF, Gunn ML. A review of split-bolus single-pass CT in the assessment of trauma patients. Emerg Radiol. 2018;25:367–74. https://doi.org/10.1007/s10140-018-1591-1.

    Article  PubMed  Google Scholar 

  139. Godt JC, Eken T, Schulz A, et al. Triple-split-bolus versus single-bolus CT in abdominal trauma patients: a comparative study. Acta Radiol. 2018;59:1038–44. https://doi.org/10.1177/0284185117752522.

    Article  PubMed  Google Scholar 

  140. Lowe LH, Isuani BH, Heller RM, et al. Pediatric renal masses: Wilms tumor and beyond. Radiographics. 2000;20:1585–603. https://doi.org/10.1148/radiographics.20.6.g00nv051585.

    Article  CAS  PubMed  Google Scholar 

  141. Buckley JC, McAninch JW. The diagnosis, management, and outcomes of pediatric renal injuries. Urol Clin North Am. 2006;33(33–40):vi. https://doi.org/10.1016/j.ucl.2005.11.001.

    Article  PubMed  Google Scholar 

  142. McAleer IM, Kaplan GW. Pediatric genitourinary trauma. Urol Clin North Am. 1995;22:177–88.

    Article  CAS  PubMed  Google Scholar 

  143. Dacher JN, Boillot B, Eurin D, et al. Rational use of CT in acute pyelonephritis: findings and relationships with reflux. Pediatr Radiol. 1993;23:281–5. https://doi.org/10.1007/BF02010915.

    Article  CAS  PubMed  Google Scholar 

  144. Tunaci A, Yekeler E. Multidetector row CT of the kidneys. Eur J Radiol. 2004;52:56–66. https://doi.org/10.1016/j.ejrad.2004.03.033.

    Article  PubMed  Google Scholar 

  145. Volle E, Park W, Kaufmann HJ. MRI examination and monitoring of pediatric patients under sedation. Pediatr Radiol. 1996;26:280–1. https://doi.org/10.1007/BF01372113.

    Article  CAS  PubMed  Google Scholar 

  146. Hoffer FA. Magnetic resonance imaging of abdominal masses in the pediatric patient. Semin Ultrasound CT MR. 2005;26:212–23.

    Article  PubMed  Google Scholar 

  147. Rohrschneider WK, Weirich A, Rieden K, et al. US, CT and MR imaging characteristics of nephroblastomatosis. Pediatr Radiol. 1998;28:435–43.

    Article  CAS  PubMed  Google Scholar 

  148. Israel GM, Hindman N, Hecht E, Krinsky G. The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol. 2005;184:1868–72.

    Article  PubMed  Google Scholar 

  149. Pretorius ES, Wickstrom ML, Siegelman ES. MR imaging of renal neoplasms. Magn Reson Imaging Clin N Am. 2000;8:813–36.

    Article  CAS  PubMed  Google Scholar 

  150. Ramchandani P, Soulen RL, Schnall RI, et al. Impact of magnetic resonance on staging of renal carcinoma. Urology. 1986;27:564–8.

    Article  CAS  PubMed  Google Scholar 

  151. Hallscheidt PJ, Fink C, Haferkamp A, et al. Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multidetector CT and MRI: prospective study with histopathological correlation. J Comput Assist Tomogr. 2005;29:64–8.

    Article  PubMed  Google Scholar 

  152. Kim D, Edelman RR, Kent KC, et al. Abdominal aorta and renal artery stenosis: evaluation with MR angiography. Radiology. 1990;174:727–31.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang H, Prince MR. Renal MR angiography. Magn Reson Imaging Clin N Am. 2004;12:487–503, vi. https://doi.org/10.1016/j.mric.2004.03.002.

    Article  PubMed  Google Scholar 

  154. Schoenberg SO, Rieger J, Nittka M, et al. Renal MR angiography: current debates and developments in imaging of renal artery stenosis. Semin Ultrasound CT MR. 2003;24:255–67.

    Article  PubMed  Google Scholar 

  155. Marcos HB, Choyke PL. Magnetic resonance angiography of the kidney. Semin Nephrol. 2000;20:450–5.

    CAS  PubMed  Google Scholar 

  156. Vasbinder GBC, Nelemans PJ, Kessels AGH, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med. 2004;141:674–82; discussion 682. https://doi.org/10.7326/0003-4819-141-9-200411020-00007.

    Article  PubMed  Google Scholar 

  157. Kovanlikaya A, Okkay N, Cakmakci H, et al. Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol. 2004;49:76–80.

    Article  PubMed  Google Scholar 

  158. Weiser AC, Amukele SA, Leonidas JC, Palmer LS. The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol. 2003;169:2308–11. https://doi.org/10.1097/01.ju.0000068082.91869.29.

    Article  PubMed  Google Scholar 

  159. Leonidas JC, Berdon WE. MR imaging of urinary tract infections in children. Radiology. 1999;210:582–4.

    Article  CAS  PubMed  Google Scholar 

  160. Ku JH, Jeon YS, Kim ME, et al. Is there a role for magnetic resonance imaging in renal trauma? Int J Urol. 2001;8:261–7.

    Article  CAS  PubMed  Google Scholar 

  161. Marcos HB, Noone TC, Semelka RC. MRI evaluation of acute renal trauma. J Magn Reson Imaging. 1998;8:989–90.

    Article  CAS  PubMed  Google Scholar 

  162. Schmid-Tannwald C, Oto A, Reiser MF, Zech CJ. Diffusion-weighted MRI of the abdomen: current value in clinical routine. J Magn Reson Imaging. 2013;37:35–47. https://doi.org/10.1002/jmri.23643.

    Article  PubMed  Google Scholar 

  163. Lee CU, Glockner JF, Glaser KJ, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012;19:834–41. https://doi.org/10.1016/j.acra.2012.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Serai SD, Otero HJ, Calle-Toro JS, et al. Diffusion tensor imaging of the kidney in healthy controls and in children and young adults with autosomal recessive polycystic kidney disease. Abdom Radiol (New York). 2019; https://doi.org/10.1007/s00261-019-01933-4.

  165. Wang Y-T, Li Y-C, Yin L-L, et al. Functional assessment of transplanted kidneys with magnetic resonance imaging. World J Radiol. 2015;7:343–9. https://doi.org/10.4329/wjr.v7.i10.343.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dickerson EC, Dillman JR, Smith EA, et al. Pediatric MR urography: indications, techniques, and approach to review. Radiographics. 2015;35:1208–30. https://doi.org/10.1148/rg.2015140223.

    Article  PubMed  Google Scholar 

  167. Delgado J, Bedoya MA, Adeb M, et al. Optimizing functional MR urography: prime time for a 30-minutes-or-less fMRU. Pediatr Radiol. 2015;45:1333–43. https://doi.org/10.1007/s00247-015-3324-x.

    Article  PubMed  Google Scholar 

  168. Little SB, Jones RA, Grattan-Smith JD. Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol. 2008;38:S106–24.

    Article  PubMed  Google Scholar 

  169. Paulson DF, Glenn JF, Hughes J, et al. Pediatric urolithiasis. J Urol. 1972;108:811–4.

    Article  CAS  PubMed  Google Scholar 

  170. Breatnach E, Smith SE. The radiology of renal stones in children. Clin Radiol. 1983;34:59–64. https://doi.org/10.1016/s0009-9260(83)80384-5.

    Article  CAS  PubMed  Google Scholar 

  171. Day DL, Scheinman JI, Mahan J. Radiological aspects of primary hyperoxaluria. AJR Am J Roentgenol. 1986;146:395–401. https://doi.org/10.2214/ajr.146.2.395.

    Article  CAS  PubMed  Google Scholar 

  172. Patriquin H, Robitaille P. Renal calcium deposition in children: sonographic demonstration of the Anderson-Carr progression. AJR Am J Roentgenol. 1986;146:1253–6.

    Article  CAS  PubMed  Google Scholar 

  173. Jevtic V. Imaging of renal osteodystrophy. Eur J Radiol. 2003;46:85–95.

    Article  CAS  PubMed  Google Scholar 

  174. Lebowitz RL. Urography in children: when should it be done? 1. Infection. Postgr Med. 1978;64:63–72.

    Article  CAS  Google Scholar 

  175. Lebowitz RL. Urography in children: when should it be done? 2. Conditions other than infection. Postgr Med. 1978;64:61–70.

    Article  CAS  Google Scholar 

  176. American Academy of Pediatrics: Committee on Radiology. Excretory urography for evaluation of enuresis. Pediatrics. 1980;65:A49–50.

    Article  Google Scholar 

  177. Lebowitz RL. Excretory urography in children. AJR Am J Roentgenol. 1994;163:990.

    Article  CAS  PubMed  Google Scholar 

  178. Sourtzis S, Thibeau JF, Damry N, et al. Radiologic investigation of renal colic: unenhanced helical CT compared with excretory urography. AJR Am J Roentgenol. 1999;172:1491–4.

    Article  CAS  PubMed  Google Scholar 

  179. McNicholas MM, Raptopoulos VD, Schwartz RK, et al. Excretory phase CT urography for opacification of the urinary collecting system. AJR Am J Roentgenol. 1998;170:1261–7.

    Article  CAS  PubMed  Google Scholar 

  180. O’Malley ME, Hahn PF, Yoder IC, et al. Comparison of excretory phase, helical computed tomography with intravenous urography in patients with painless haematuria. Clin Radiol. 2003;58:294–300.

    Article  PubMed  Google Scholar 

  181. Borthne AS, Pierre-Jerome C, Gjesdal KI, et al. Pediatric excretory MR urography: comparative study of enhanced and non-enhanced techniques. Eur Radiol. 2003;13:1423–7. https://doi.org/10.1007/s00330-002-1750-2.

    Article  PubMed  Google Scholar 

  182. Pollack HM, Banner MP. Current status of excretory urography. A premature epitaph? Urol Clin North Am. 1985;12:585–601.

    Article  CAS  PubMed  Google Scholar 

  183. Carrico C, Lebowitz RL. Incontinence due to an infrasphincteric ectopic ureter: why the delay in diagnosis and what the radiologist can do about it. Pediatr Radiol. 1998;28:942–9. https://doi.org/10.1007/s002470050506.

    Article  CAS  PubMed  Google Scholar 

  184. Smith H, Weaver D, Barjenbruch O, et al. Routine excretory urography in follow-up of superficial transitional cell carcinoma of bladder. Urology. 1989;34:193–6.

    Article  CAS  PubMed  Google Scholar 

  185. Kawashima A, Sandler CM, Wasserman NF, et al. Imaging of urethral disease: a pictorial review. Radiographics. 2004;24(Suppl 1):S195–216.

    Article  PubMed  Google Scholar 

  186. Yoder IC, Papanicolaou N. Imaging the urethra in men and women. Urol Radiol. 1992;14:24–8. https://doi.org/10.1007/BF02926897.

    Article  CAS  PubMed  Google Scholar 

  187. Pavlica P, Barozzi L, Menchi I. Imaging of male urethra. Eur Radiol. 2003;13:1583–96.

    Article  PubMed  Google Scholar 

  188. Sclafani SJ, Becker JA. Radiologic diagnosis of extrarenal genitourinary trauma. Urol Radiol. 1985;7:201–10.

    Article  CAS  PubMed  Google Scholar 

  189. Patel IJ, Rahim S, Davidson JC, et al. Society of Interventional Radiology Consensus Guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions—part II : recommendations. J Vasc Interv Radiol. 2019;30:1168–1184.e1. https://doi.org/10.1016/j.jvir.2019.04.017.

    Article  PubMed  Google Scholar 

  190. Pabon-Ramos WM, Dariushnia SR, Walker TG, et al. Quality improvement guidelines for percutaneous nephrostomy. J Vasc Interv Radiol. 2016;27:410–4. https://doi.org/10.1016/j.jvir.2015.11.045.

    Article  PubMed  Google Scholar 

  191. Barnacle AM, Roebuck DJ, Racadio JM. Nephro-urology interventions in children. Tech Vasc Interv Radiol. 2010;13:229–37. https://doi.org/10.1053/j.tvir.2010.04.005.

    Article  PubMed  Google Scholar 

  192. Grignon A, Filiatrault D, Homsy Y, et al. Ureteropelvic junction stenosis: antenatal ultrasonographic diagnosis, postnatal investigation, and follow-up. Radiology. 1986;160:649–51. https://doi.org/10.1148/radiology.160.3.3526403.

    Article  CAS  PubMed  Google Scholar 

  193. Wood BP, Ben-Ami T, Teele RL, Rabinowitz R. Ureterovesical obstruction and megaloureter: diagnosis by real-time US. Radiology. 1985;156:79–81. https://doi.org/10.1148/radiology.156.1.3890019.

    Article  CAS  PubMed  Google Scholar 

  194. Gilsanz V, Miller JH, Reid BS. Ultrasonic characteristics of posterior urethral valves. Radiology. 1982;145:143–5. https://doi.org/10.1148/radiology.145.1.7122871.

    Article  CAS  PubMed  Google Scholar 

  195. Nguyen HT, Benson CB, Bromley B, et al. Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol. 2014; https://doi.org/10.1016/j.jpurol.2014.10.002.

  196. Nelson CP, Lee RS, Trout AT, et al. The association of postnatal urinary tract dilation risk score with clinical outcomes. J Pediatr Urol. 2019;15:341.e1–6. https://doi.org/10.1016/j.jpurol.2019.05.001.

    Article  CAS  PubMed  Google Scholar 

  197. Hains DS, Bates CM, Ingraham S, Schwaderer AL. Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol. 2009;24:233–41. https://doi.org/10.1007/s00467-008-0828-8.

    Article  PubMed  Google Scholar 

  198. Cardona-Grau D, Kogan BA. Update on multicystic dysplastic kidney. Curr Urol Rep. 2015;16:67. https://doi.org/10.1007/s11934-015-0541-7.

    Article  PubMed  Google Scholar 

  199. Mascatello VJ, Smith EH, Carrera GF, et al. Ultrasonic evaluation of the obstructed duplex kidney. AJR Am J Roentgenol. 1977;129:113–20.

    Article  CAS  PubMed  Google Scholar 

  200. El-Feky MM. Weigert-Meyer law. https://radiopaedia.org/articles/weigert-meyer-law. Accessed 25 Jun 2021.

  201. Nussbaum AR, Dorst JP, Jeffs RD, et al. Ectopic ureter and ureterocele: their varied sonographic manifestations. Radiology. 1986;159:227–35.

    Article  CAS  PubMed  Google Scholar 

  202. Griffin J, Jennings C, MacErlean D. Ultrasonic evaluation of simple and ectopic ureteroceles. Clin Radiol. 1983;34:55–7. https://doi.org/10.1016/s0009-9260(83)80380-8.

    Article  CAS  PubMed  Google Scholar 

  203. Hwang JY, Shin JH, Lee YJ, et al. Percutaneous nephrostomy placement in infants and young children. Diagn Interv Imaging. 2018;99:157–62. https://doi.org/10.1016/j.diii.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  204. Laurin S, Sandström S, Ivarsson H. Percutaneous nephrostomy in infants and children. Acad Radiol. 2000;7:526–9. https://doi.org/10.1016/S1076-6332(00)80325-6.

    Article  CAS  PubMed  Google Scholar 

  205. Stanley P, Diament MJ. Pediatric percutaneous nephrostomy: experience with 50 patients. J Urol. 1986;135:1223–6. https://doi.org/10.1016/S0022-5347(17)46046-0.

    Article  CAS  PubMed  Google Scholar 

  206. Shellikeri S, Daulton R, Sertic M, et al. Pediatric percutaneous nephrostomy: a multicenter experience. J Vasc Interv Radiol. 2018;29 https://doi.org/10.1016/j.jvir.2017.09.017.

  207. Irving HC, Arthur RJ, Thomas DFM. Percutaneous nephrostomy in paediatrics. Clin Radiol. 1987; https://doi.org/10.1016/S0009-9260(87)80057-0.

  208. Koral K, Saker MC, Morello FP, et al. Conventional versus modified technique for percutaneous nephrostomy in newborns and young infants. J Vasc Interv Radiol. 2003;14:113–6. https://doi.org/10.1097/01.RVI.0000052301.26939.20.

    Article  PubMed  Google Scholar 

  209. Yavascan O, Aksu N, Erdogan H, et al. Original article: Percutaneous nephrostomy in children: diagnostic and therapeutic importance. Pediatr Nephrol. 2005;20:768–72. https://doi.org/10.1007/s00467-005-1845-5.

    Article  PubMed  Google Scholar 

  210. Back SJ, Hartung EA, Ntoulia A, Darge K. Imaging in pediatric urinary tract infections. J Pediatr Infect Dis. 2017;12:72–88. https://doi.org/10.1055/s-0037-1599121.

    Article  Google Scholar 

  211. National Institute for Health and Care Excellence. Urinary tract infection in under 16s: diagnosis and management. 2007. https://www.nice.org.uk/guidance/cg54. Accessed 22 Sept 2016.

  212. Stein R, Dogan HS, Hoebeke P, et al. Urinary tract infections in children: EAU/ESPU guidelines. Eur Urol. 2015;67:546–58. https://doi.org/10.1016/j.eururo.2014.11.007.

    Article  PubMed  Google Scholar 

  213. Tsai JD, Chang SJ, Lin CC, Yang SSD. Incomplete bladder emptying is associated with febrile urinary tract infections in infants. J Pediatr Urol. 2014;10:1222–6. https://doi.org/10.1016/j.jpurol.2014.06.013.

    Article  PubMed  Google Scholar 

  214. Gordon ZN, McLeod DJ, Becknell B, et al. Uroepithelial thickening on sonography improves detection of vesicoureteral reflux in children with first febrile urinary tract infection. J Urol. 2015;194:1074–9. https://doi.org/10.1016/j.juro.2015.05.001.

    Article  PubMed  Google Scholar 

  215. Pickworth FE, Carlin JB, Ditchfield MR, et al. Sonographic measurement of renal enlargement in children with acute pyelonephritis and time needed for resolution: implications for renal growth assessment. Am J Roentgenol. 1995;165:405–8. https://doi.org/10.2214/ajr.165.2.7618567.

    Article  CAS  Google Scholar 

  216. Farmer KD, Gellett LR, Dubbins PA. The sonographic appearance of acute focal pyelonephritis 8 years experience. Clin Radiol. 2002;57:483–7. https://doi.org/10.1053/crad.2002.0935.

    Article  PubMed  Google Scholar 

  217. Dacher JN, Avni F, François A, et al. Renal sinus hyperechogenicity in acute pyelonephritis: description and pathological correlation. Pediatr Radiol. 1999;29:179–82. https://doi.org/10.1007/s002470050566.

    Article  CAS  PubMed  Google Scholar 

  218. Cheng CH, Tsau YK, Hsu SY, Lee TL. Effective ultrasonographic predictor for the diagnosis of acute lobar nephronia. Pediatr Infect Dis J. 2004;23:11–4. https://doi.org/10.1097/01.inf.0000105202.57991.3e.

    Article  PubMed  Google Scholar 

  219. Shaikh N, Craig JC, Rovers MM, et al. Identification of children and adolescents at risk for renal scarring after a first urinary tract infection: a meta-analysis with individual patient data. JAMA Pediatr. 2014;168:893–900. https://doi.org/10.1001/jamapediatrics.2014.637.

    Article  PubMed  Google Scholar 

  220. Zulfiqar M, Ubilla CV, Nicola R, Menias CO. Imaging of renal infections and inflammatory disease. Radiol Clin N Am. 2020;58:909–23.

    Article  PubMed  Google Scholar 

  221. Wolin EA, Hartman DS, Olson JR. Nephrographic and pyelographic analysis of CT urography: differential diagnosis. Am J Roentgenol. 2013;200:1197–203.

    Article  Google Scholar 

  222. Vivier PH, Sallem A, Beurdeley M, et al. MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol. 2014;24:19–25. https://doi.org/10.1007/s00330-013-2971-2.

    Article  PubMed  Google Scholar 

  223. Linder BJ, Granberg CF. Pediatric renal abscesses: a contemporary series. J Pediatr Urol. 2016;12:99.e1–6. https://doi.org/10.1016/j.jpurol.2015.05.037.

    Article  PubMed  Google Scholar 

  224. Seguias L, Srinivasan K, Mehta A. Pediatric renal abscess: a 10-year single-center retrospective analysis. Hosp Pediatr. 2012;2:161–6. https://doi.org/10.1542/hpeds.2012-0010.

    Article  PubMed  Google Scholar 

  225. Khanna G, Naranjo A, Hoffer F, et al. Detection of preoperative wilms tumor rupture with CT: a report from the Children’s Oncology Group. Radiology. 2013;266:610–7. https://doi.org/10.1148/radiol.12120670.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Khanna G, Rosen N, Anderson JR, et al. Evaluation of diagnostic performance of CT for detection of tumor thrombus in children with Wilms tumor: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;58:551–5. https://doi.org/10.1002/pbc.23222.

    Article  PubMed  Google Scholar 

  227. McDonald K, Duffy P, Chowdhury T, McHugh K. Added value of abdominal cross-sectional imaging (CT or MRI) in staging of Wilms’ tumours. Clin Radiol. 2013;68:16–20. https://doi.org/10.1016/j.crad.2012.05.006.

    Article  CAS  PubMed  Google Scholar 

  228. Metzger ML, Dome JS. Current therapy for Wilms’ tumor. Oncologist. 2005;10:815–26. https://doi.org/10.1634/theoncologist.10-10-815.

    Article  CAS  PubMed  Google Scholar 

  229. Acord MR, Cahill AM, Durand R, et al. Contrast-enhanced ultrasound in pediatric interventional radiology. Pediatr Radiol. 2021; https://doi.org/10.1007/s00247-020-04853-4.

  230. Ruff S, Bittman M, Lobko I, et al. Emergency embolization of a Wilms’ tumor for life-threatening hemorrhage prior to nephrectomy. J Pediatr Surg Case Rep. 2014;2:280–3. https://doi.org/10.1016/j.epsc.2014.05.013.

    Article  Google Scholar 

  231. Bholah R, Bunchman TE. Review of pediatric pheochromocytoma and paraganglioma. Front Pediatr. 2017;5:1–14. https://doi.org/10.3389/fped.2017.00155.

    Article  Google Scholar 

  232. Yamakado K, Tanaka N, Nakagawa T, et al. Renal angiomyolipoma: relationship between tumor size, aneurysm formation, and rupture. Radiology. 2002;225:78–82.

    Article  PubMed  Google Scholar 

  233. Kiefer RM, Stavropoulos SW. The role of interventional radiology techniques in the management of renal angiomyolipomas. Curr Urol Rep. 2017;18 https://doi.org/10.1007/s11934-017-0687-6.

  234. Warncke JC, Brodie KE, Grantham EC, et al. Pediatric renal angiomyolipomas in tuberous sclerosis complex. J Urol. 2017;197:500–6. https://doi.org/10.1016/j.juro.2016.09.082.

    Article  PubMed  Google Scholar 

  235. Williams JM, Racadio JM, Johnson ND, et al. Embolization of renal angiomyolipomata in patients with tuberous sclerosis complex. Am J Kidney Dis. 2005; https://doi.org/10.1053/j.ajkd.2005.09.028.

  236. Ewalt DH, Diamond N, Rees C, et al. Long-term outcome of transcatheter embolization of renal angiomyolipomas due to tuberous sclerosis complex. J Urol. 2005;174:1764–6. https://doi.org/10.1097/01.ju.0000177497.31986.64.

    Article  PubMed  Google Scholar 

  237. Johnson SC, Graham S, D’Agostino H, et al. Percutaneous renal cryoablation of angiomyolipomas in patients with solitary kidneys. Urology. 2009;74:1246–9. https://doi.org/10.1016/j.urology.2008.09.005.

    Article  PubMed  Google Scholar 

  238. Shingleton WB, Sewell PE. Percutaneous renal tumor cryoablation with magnetic resonance imaging guidance. J Urol. 2001;165:773–6.

    Article  CAS  PubMed  Google Scholar 

  239. Brown SL, Elder JS, Spirnak JP. Are pediatric patients more susceptible to major renal injury from blunt trauma? A comparative study. J Urol. 1998;160:138–40. https://doi.org/10.1016/S0022-5347(01)63071-4.

    Article  CAS  PubMed  Google Scholar 

  240. Stein JP, Kaji DM, Eastham J, et al. Blunt renal trauma in the pediatric population: indications for radiographic evaluation. Urology. 1994;44:406–10.

    Article  CAS  PubMed  Google Scholar 

  241. John SD. Trends in pediatric emergency imaging. Radiol Clin N Am. 1999;37:995–1034, vi.

    Article  CAS  PubMed  Google Scholar 

  242. Rose JS. Ultrasound in abdominal trauma. Emerg Med Clin North Am. 2004;22:581–99, vii.

    Article  PubMed  Google Scholar 

  243. Soudack M, Epelman M, Maor R, et al. Experience with focused abdominal sonography for trauma (FAST) in 313 pediatric patients. J Clin Ultrasound. 2004;32:53–61.

    Article  PubMed  Google Scholar 

  244. Taylor GA, Sivit CJ. Posttraumatic peritoneal fluid: is it a reliable indicator of intraabdominal injury in children? J Pediatr Surg. 1995;30:1644–8.

    Article  CAS  PubMed  Google Scholar 

  245. Breyer BN, McAninch JW, Elliott SP, Master VA. Minimally invasive endovascular techniques to treat acute renal hemorrhage. J Urol. 2008;179:2248–53. https://doi.org/10.1016/j.juro.2008.01.104.

    Article  PubMed  Google Scholar 

  246. Lee JN, Lim JK, Woo MJ, et al. Predictive factors for conservative treatment failure in grade IV pediatric blunt renal trauma. J Pediatr Urol. 2016;12:93.e1–7. https://doi.org/10.1016/j.jpurol.2015.06.014.

    Article  PubMed  Google Scholar 

  247. McClung C, Hotaling JM, Wang J, et al. Contemporary trends in the immediate surgical management of renal trauma using a national database. J Trauma Acute Care Surg. 2013;75:1–10. https://doi.org/10.1097/TA.0b013e3182a53ac2.Contemporary.

    Article  Google Scholar 

  248. Jacobs MA, Hotaling JM, Mueller BA, et al. Conservative management vs early surgery for high grade pediatric renal trauma—do nephrectomy rates differ? J Urol. 2012;187:1817–21. https://doi.org/10.1016/j.juro.2011.12.095.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Umbreit EC, Routh JC, Husmann DA. Nonoperative management of nonvascular grade IV blunt renal trauma in children: meta-analysis and systematic review. Urology. 2009;74:579–82. https://doi.org/10.1016/j.urology.2009.04.049.

    Article  PubMed  Google Scholar 

  250. Au JK, Tan X, Sidani M, et al. Imaging characteristics associated with failure of nonoperative management in high-grade pediatric blunt renal trauma. J Pediatr Urol. 2016;12:294.e1–6. https://doi.org/10.1016/j.jpurol.2016.02.021.

    Article  CAS  PubMed  Google Scholar 

  251. Hotaling JM, Sorensen MD, Smith TG, et al. Analysis of diagnostic angiography and angioembolization in the acute management of renal trauma using a national data set. J Urol. 2011;185:1316–20. https://doi.org/10.1016/j.juro.2010.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Wyszyńska T, Cichocka E, Wieteska-Klimczak A, et al. A single pediatric center experience with 1025 children with hypertension. Acta Paediatr. 1992;81:244–6. https://doi.org/10.1111/j.1651-2227.1992.tb12213.x.

    Article  PubMed  Google Scholar 

  253. Tullus K, Roebuck DJ, McLaren CA, Marks SD. Imaging in the evaluation of renovascular disease. Pediatr Nephrol. 2010;25:1049–56.

    Article  PubMed  Google Scholar 

  254. Dillman JR, Smith EA, Coley BD. Ultrasound imaging of renin-mediated hypertension. Pediatr Radiol. 2017;47:1116–24. https://doi.org/10.1007/s00247-017-3840-y.

    Article  PubMed  Google Scholar 

  255. Castelli PK, Dillman JR, Kershaw DB, et al. Renal sonography with Doppler for detecting suspected pediatric renin-mediated hypertension—is it adequate? Pediatr Radiol. 2014;44:42–9. https://doi.org/10.1007/s00247-013-2785-z.

    Article  PubMed  Google Scholar 

  256. Eklöf H, Ahlström H, Magnusson A, et al. A prospective comparison of duplex ultrasonography, captopril renography, MRA, and CTA in assessing renal artery stenosis. Acta Radiol. 2006;47:764–74. https://doi.org/10.1080/02841850600849092.

    Article  PubMed  Google Scholar 

  257. Trautmann A, Roebuck DJ, McLaren CA, et al. Non-invasive imaging cannot replace formal angiography in the diagnosis of renovascular hypertension. Pediatr Nephrol. 2017;32:495–502. https://doi.org/10.1007/s00467-016-3501-7.

    Article  PubMed  Google Scholar 

  258. Son JS. Successful cutting balloon angioplasty in a child with resistant renal artery stenosis. BMC Res Notes. 2015;8:670. https://doi.org/10.1186/s13104-015-1673-z.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Srinivasan A, Krishnamurthy G, Fontalvo-Herazo L, et al. Angioplasty for renal artery stenosis in pediatric patients: an 11-year retrospective experience. J Vasc Interv Radiol. 2010;21:1672–80. https://doi.org/10.1016/j.jvir.2010.07.012.

    Article  PubMed  Google Scholar 

  260. Morosetti D, Chiocchi M, De Crescenzo F, et al. Bilateral renal artery stenosis treated with drug-eluting balloon angioplasty in unique treatment. Radiol Case Rep. 2019;14:242–5. https://doi.org/10.1016/j.radcr.2018.10.033.

    Article  PubMed  Google Scholar 

  261. Teigen CL, Mitchell SE, Venbrux AC, et al. Segmental renal artery embolization for treatment of pediatric renovascular hypertension. J Vasc Interv Radiol. 1992;3:111–7. https://doi.org/10.1016/S1051-0443(92)72202-7.

    Article  CAS  PubMed  Google Scholar 

  262. Zhu G, He F, Gu Y, et al. Angioplasty for pediatric renovascular hypertension: a 13-year experience. Diagn Interv Radiol. 2014;20:285–92. https://doi.org/10.5152/dir.2014.13208.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Kari JA, Roebuck DJ, McLaren CA, et al. Angioplasty for renovascular hypertension in 78 children. Arch Dis Child. 2015;100:474–8. https://doi.org/10.1136/archdischild-2013-305886.

    Article  PubMed  Google Scholar 

  264. Eliason JL, Coleman DM, Criado E, et al. Remedial operations for failed endovascular therapy of 32 renal artery stenoses in 24 children. Pediatr Nephrol. 2016;31:809–17. https://doi.org/10.1007/s00467-015-3275-3.

    Article  PubMed  Google Scholar 

  265. Riccabona M, Avni FE, Damasio MB, et al. ESPR Uroradiology Task Force and ESUR Paediatric Working Group—Imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children. Pediatr Radiol. 2012;42:1275–83. https://doi.org/10.1007/s00247-012-2436-9.

    Article  PubMed  Google Scholar 

  266. Gimpel C, Avni FE, Bergmann C, et al. Perinatal diagnosis, management, and follow-up of cystic renal diseases. JAMA Pediatr. 2018;172:74. https://doi.org/10.1001/jamapediatrics.2017.3938.

    Article  PubMed  Google Scholar 

  267. Gimpel C, Avni EFF, Breysem L, et al. Imaging of kidney cysts and cystic kidney diseases in children: an International Working Group Consensus Statement. Radiology. 2019;290:181243. https://doi.org/10.1148/radiol.2018181243.

    Article  Google Scholar 

  268. Bosniak MA. The Bosniak renal cyst classification: 25 years later. Radiology. 2012;262:781–5.

    Article  PubMed  Google Scholar 

  269. Karmazyn B, Tawadros A, Delaney LR, et al. Ultrasound classification of solitary renal cysts in children. J Pediatr Urol. 2015;11:149.e1–6. https://doi.org/10.1016/j.jpurol.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  270. Peng Y, Jia L, Sun N, et al. Assessment of cystic renal masses in children: comparison of multislice computed tomography and ultrasound imaging using the Bosniak classification system. Eur J Radiol. 2010;75:287–92. https://doi.org/10.1016/j.ejrad.2010.05.035.

    Article  PubMed  Google Scholar 

  271. Wallis MC, Lorenzo AJ, Farhat WA, et al. Risk assessment of incidentally detected complex renal cysts in children: potential role for a modification of the Bosniak classification. J Urol. 2008;180:317–21. https://doi.org/10.1016/j.juro.2008.03.063.

    Article  PubMed  Google Scholar 

  272. Stuck KJ, Koff SA, Silver TM. Ultrasonic features of multicystic dysplastic kidney: expanded diagnostic criteria. Radiology. 1982;143:217–21.

    Article  CAS  PubMed  Google Scholar 

  273. Patriquin HB, O’Regan S. Medullary sponge kidney in childhood. AJR Am J Roentgenol. 1985;145:315–9.

    Article  CAS  PubMed  Google Scholar 

  274. McHugh K, Stringer DA, Hebert D, Babiak CA. Simple renal cysts in children: diagnosis and follow-up with US. Radiology. 1991;178:383–5.

    Article  CAS  PubMed  Google Scholar 

  275. Cadnapaphornchai MA, McFann K, Strain JD, et al. Prospective change in renal volume and function in children with ADPKD. Clin J Am Soc Nephrol. 2009;4:820–9. https://doi.org/10.2215/CJN.02810608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Irazabal MV, Rangel LJ, Bergstralh EJ, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26:160–72. https://doi.org/10.1681/ASN.2013101138.

    Article  CAS  PubMed  Google Scholar 

  277. Traubici J, Daneman A. High-resolution renal sonography in children with autosomal recessive polycystic kidney disease. AJR Am J Roentgenol. 2005;184:1630–3.

    Article  PubMed  Google Scholar 

  278. Srinath A, Shneider BL. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr. 2012;54:580–7. https://doi.org/10.1097/MPG.0b013e31824711b7.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Fowler KAB, Locken JA, Duchesne JH, Williamson MR. US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology. 2002;222:109–13. https://doi.org/10.1148/radiol.2221010453.

    Article  PubMed  Google Scholar 

  280. Wu DSH, Stoller ML. Indinavir urolithiasis. Curr Opin Urol. 2000;10:557–61.

    Article  CAS  PubMed  Google Scholar 

  281. Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology. 2010;257:394–401. https://doi.org/10.1148/radiol.10100249.

    Article  PubMed  Google Scholar 

  282. El-Assmy A, El-Nahas AR, Abou-El-Ghar ME, et al. Kidney stone size and Hounsfield units predict successful shockwave lithotripsy in children. Urology. 2013;81:880–4. https://doi.org/10.1016/j.urology.2012.12.012.

    Article  PubMed  Google Scholar 

  283. Wilson DA, Wenzl JE, Altshuler GP. Ultrasound demonstration of diffuse cortical nephrocalcinosis in a case of primary hyperoxaluria. AJR Am J Roentgenol. 1979;132:659–61. https://doi.org/10.2214/ajr.132.4.659.

    Article  CAS  PubMed  Google Scholar 

  284. Fleming JS, Zivanovic MA, Blake GM, et al. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25:759–69. https://doi.org/10.1097/01.mnm.0000136715.71820.4a.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to Drs. Ruth Lim and Jeffrey Traubici, whose excellent work in the previous edition laid the foundation for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erum A. Hartung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viteri, B., Vatsky, S., Farkas, A., Elsingergy, M., Bellah, R.D., Hartung, E.A. (2023). Imaging and Radiological Interventions in the Pediatric Urinary Tract. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics