Skip to main content

Metabolic Disorders Affecting the Kidney

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 1127 Accesses

Abstract

Inherited diseases of metabolism may have kidney involvement either inaugural or as a long-term chronic complication with heterogeneous mechanisms. Chronic kidney disease (CKD) is a common complication of methylmalonic acidemia, a family of diseases which share the common feature of elevated concentration of methylmalonic acid in blood and urine. CKD is present in childhood in half of the patients and may evolve to end-stage renal disease requiring renal replacement therapy. Organ transplantation is a therapeutic option. Liver transplantation, kidney transplantation, or combined liver and kidney transplantation have been proposed for renal failure or as an enzyme replacement therapy for frequent metabolic decompensations, and to prevent long-term complications. Renal involvement is also described in lysinuric protein intolerance patients with both tubular and glomerular abnormalities. The majority of patients with kidney involvement have a tubular dysfunction. In Fabry disease, a X-linked lysosomal storage disorder caused by deficient activity of the lysosomal enzyme α-galactosidase A, patients may present with microalbuminuria and proteinuria during the second or third decades, and develop CKD during adulthood. In Glycogen Storage disease type 1, the main renal complication is glomerular hyperfiltration and persistent proteinuria. Treatment of renal complication of inherited metabolic diseases includes both general metabolic control or specific enzyme therapy and usual nephroprotective measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baumgartner MR, Horster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31(3):350–60.

    Article  CAS  PubMed  Google Scholar 

  3. Huemer M, Diodato D, Schwahn B, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis. 2017;40(1):21–48.

    Article  CAS  PubMed  Google Scholar 

  4. Forny P, Horster F, Ballhausen D, et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: first revision. J Inherit Metab Dis. 2021;44(3):566–92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Horster F, Baumgartner MR, Viardot C, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007;62(2):225–30.

    Article  PubMed  Google Scholar 

  6. Horster F, Tuncel AT, Gleich F, et al. Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut. J Inherit Metab Dis. 2021;44(1):193–214.

    Article  PubMed  Google Scholar 

  7. Cosson MA, Benoist JF, Touati G, et al. Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab. 2009;97(3):172–8.

    Article  CAS  PubMed  Google Scholar 

  8. Morath MA, Okun JG, Muller IB, et al. Neurodegeneration and chronic renal failure in methylmalonic aciduria—a pathophysiological approach. J Inherit Metab Dis. 2008;31(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  9. Morath MA, Horster F, Sauer SW. Renal dysfunction in methylmalonic acidurias: review for the pediatric nephrologist. Pediatr Nephrol. 2013;28(2):227–35.

    Article  PubMed  Google Scholar 

  10. Haijes HA, Jans JJM, Tas SY, Verhoeven-Duif NM, van Hasselt PM. Pathophysiology of propionic and methylmalonic acidemias. Part 1: complications. J Inherit Metab Dis. 2019;42(5):730–44.

    Article  CAS  PubMed  Google Scholar 

  11. Kruszka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP. Renal growth in isolated methylmalonic acidemia. Genet Med. 2013;15(12):990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horster F, Garbade SF, Zwickler T, et al. Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis. 2009;32(5):630.

    Article  CAS  PubMed  Google Scholar 

  13. Manoli I, Sysol JR, Li L, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110(33):13552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruppert T, Schumann A, Grone HJ, et al. Molecular and biochemical alterations in tubular epithelial cells of patients with isolated methylmalonic aciduria. Hum Mol Genet. 2015;24(24):7049–59.

    CAS  PubMed  Google Scholar 

  15. Luciani A, Schumann A, Berquez M, et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun. 2020;11(1):970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohura T, Kikuchi M, Abukawa D, et al. Type 4 renal tubular acidosis (subtype 2) in a patient with methylmalonic acidaemia. Eur J Pediatr. 1990;150(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wolff JA, Strom C, Griswold W, et al. Proximal renal tubular acidosis in methylmalonic acidemia. J Neurogenet. 1985;2(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  18. D’Angio CT, Dillon MJ, Leonard JV. Renal tubular dysfunction in methylmalonic acidaemia. Eur J Pediatr. 1991;150(4):259–63.

    Article  PubMed  Google Scholar 

  19. Zsengeller ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29(11):2139–46.

    Article  PubMed  Google Scholar 

  20. Dao M, Arnoux JB, Bienaime F, et al. Long-term renal outcome in methylmalonic acidemia in adolescents and adults. Orphanet J Rare Dis. 2021;16(1):220.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shchelochkov OA, Manoli I, Sloan JL, et al. Chronic kidney disease in propionic acidemia. Genet Med. 2019;21(12):2830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: from acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis. 2019;42(4):686–705.

    Article  CAS  PubMed  Google Scholar 

  23. Brassier A, Krug P, Lacaille F, et al. Long-term outcome of methylmalonic aciduria after kidney, liver, or combined liver-kidney transplantation: the French experience. J Inherit Metab Dis. 2020;43(2):234–43.

    Article  PubMed  Google Scholar 

  24. Molema F, Martinelli D, Horster F, et al. Liver and/or kidney transplantation in amino and organic acid-related inborn errors of metabolism: an overview on European data. J Inherit Metab Dis. 2021;44(3):593–605.

    Article  CAS  PubMed  Google Scholar 

  25. Molema F, Williams M, Langendonk J, et al. Neurotoxicity including posterior reversible encephalopathy syndrome after initiation of calcineurin inhibitors in transplanted methylmalonic acidemia patients: two case reports and review of the literature. JIMD Rep. 2020;51(1):89–104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mauhin W, Habarou F, Gobin S, et al. Update on lysinuric protein intolerance, a multi-faceted disease retrospective cohort analysis from birth to adulthood. Orphanet J Rare Dis. 2017;12(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Esteve E, Krug P, Hummel A, et al. Renal involvement in lysinuric protein intolerance: contribution of pathology to assessment of heterogeneity of renal lesions. Hum Pathol. 2017;62:160–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tanner LM, Nanto-Salonen K, Niinikoski H, et al. Nephropathy advancing to end-stage renal disease: a novel complication of lysinuric protein intolerance. J Pediatr. 2007;150(6):631–4, 634 e1.

    Article  PubMed  Google Scholar 

  29. Karki M, Nanto-Salonen K, Niinikoski H, Tanner LM. Urine Beta2-microglobulin is an early marker of renal involvement in LPI. JIMD Rep. 2016;25:47–55.

    Article  PubMed  Google Scholar 

  30. Nicolas C, Bednarek N, Vuiblet V, et al. Renal involvement in a French Paediatric cohort of patients with lysinuric protein intolerance. JIMD Rep. 2016;29:11–7.

    Article  CAS  PubMed  Google Scholar 

  31. Benninga MA, Lilien M, de Koning TJ, et al. Renal Fanconi syndrome with ultrastructural defects in lysinuric protein intolerance. J Inherit Metab Dis. 2007;30(3):402–3.

    Article  CAS  PubMed  Google Scholar 

  32. Riccio E, Pisani A. Fanconi syndrome with lysinuric protein intolerance. Clin Kidney J. 2014;7(6):599–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DiRocco M, Garibotto G, Rossi GA, et al. Role of haematological, pulmonary and renal complications in the long-term prognosis of patients with lysinuric protein intolerance. Eur J Pediatr. 1993;152(5):437–40.

    Article  CAS  PubMed  Google Scholar 

  34. Parto K, Kallajoki M, Aho H, Simell O. Pulmonary alveolar proteinosis and glomerulonephritis in lysinuric protein intolerance: case reports and autopsy findings of four pediatric patients. Hum Pathol. 1994;25(4):400–7.

    Article  CAS  PubMed  Google Scholar 

  35. McManus DT, Moore R, Hill CM, Rodgers C, Carson DJ, Love AH. Necropsy findings in lysinuric protein intolerance. J Clin Pathol. 1996;49(4):345–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parsons H, Snyder F, Bowen T, Klassen J, Pinto A. Immune complex disease consistent with systemic lupus erythematosus in a patient with lysinuric protein intolerance. J Inherit Metab Dis. 1996;19(5):627–34.

    Article  CAS  PubMed  Google Scholar 

  37. Nunes V, Niinikoski H. Lysinuric protein intolerance. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. Seattle: GeneReviews(R); 1993.

    Google Scholar 

  38. Germain DP, Waldek S, Banikazemi M, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18(5):1547–57.

    Article  CAS  PubMed  Google Scholar 

  39. Cairns T, Muntze J, Gernert J, Spingler L, Nordbeck P, Wanner C. Hot topics in Fabry disease. Postgrad Med J. 2018;94(1118):709–13.

    Article  CAS  PubMed  Google Scholar 

  40. Gubler MC, Lenoir G, Grunfeld JP, Ulmann A, Droz D, Habib R. Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int. 1978;13(3):223–35.

    Article  CAS  PubMed  Google Scholar 

  41. Tondel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51(5):767–76.

    Article  PubMed  Google Scholar 

  42. Ramaswami U, Najafian B, Schieppati A, Mauer M, Bichet DG. Assessment of renal pathology and dysfunction in children with Fabry disease. Clin J Am Soc Nephrol. 2010;5(2):365–70.

    Article  PubMed  Google Scholar 

  43. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eng CM, Fletcher J, Wilcox WR, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry registry. J Inherit Metab Dis. 2007;30(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  45. Grunfeld JP, Lidove O, Joly D, Barbey F. Renal disease in Fabry patients. J Inherit Metab Dis. 2001;24(Suppl 2):71–4; discussion 65.

    Article  PubMed  Google Scholar 

  46. Fogo AB, Bostad L, Svarstad E, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25(7):2168–77.

    Article  PubMed  Google Scholar 

  47. Wanner C, Arad M, Baron R, et al. European expert consensus statement on therapeutic goals in Fabry disease. Mol Genet Metab. 2018;124(3):189–203.

    Article  CAS  PubMed  Google Scholar 

  48. Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54(4):288–96.

    Article  CAS  PubMed  Google Scholar 

  49. Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  50. Martens DH, Rake JP, Navis G, Fidler V, van Dael CM, Smit GP. Renal function in glycogen storage disease type I, natural course, and renopreservative effects of ACE inhibition. Clin J Am Soc Nephrol. 2009;4(11):1741–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kishnani PS, Austin SL, Abdenur JE, et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med. 2014;16(11):e1.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Servais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Servais, A., Boyer, O., Dao, M., Hörster, F. (2023). Metabolic Disorders Affecting the Kidney. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics