Skip to main content

Simulation of Nonstationary Thermal Fields in Permafrost Using Multicore Processors

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2022)

Abstract

The paper is aimed to develop and investigate efficient parallel algorithms for solving heat-transfer equations in a three-dimensional domain. Applying the alternating-direction finite-difference scheme, the problem is reduced to solving multiple SLAEs with tridiagonal matrices. In this work, several approaches to computing the coefficients of these systems are implemented. To solve the systems, the sweep method is used. Parallel algorithms are implemented for multicore processors using OpenMP technology. The results of numerical experiments and the evaluation of the algorithms efficiency are presented. A comparison of the computing times shows that the new implementation is up to two times faster than the earlier one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samarsky, A.A., Vabishchevich, P.N.: Computational Heat Transfer, vol. 2, The Finite Difference Methodology. Wiley, Chichester (1995)

    Google Scholar 

  2. Romanovsky, V.E., Smith, S.L., Christiansen, H.H.: Permafrost thermal state in the polar Northern 430 Hemisphere during the International Polar Year 2007–2009: a synthesis. Permafr. Periglac. Proces. 21, 106–116 (2010). https://doi.org/10.1002/ppp.689

  3. Gornov, V.F., Stepanov, S.P., Vasilyeva, M.V., Vasilyev, V.I.: Mathematical modeling of heat transfer problems in the permafrost. AIP Conf. Proc. 1629, 424–431 (2014). https://doi.org/10.1063/1.4902304

  4. Stepanov, S.P., Sirditov, I.K., Vabishchevich, P.N., Vasilyeva, M.V., Vasilyev, V.I., Tceeva, A.N.: Numerical simulation of heat transfer of the pile foundations with permafrost. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Numerical Analysis and Its Applications. NAA 2016. LNCS, vol. 10187, pp. 625–632. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0_71

  5. Kong, X, Doré, G, Calmels, F.: Thermal modeling of heat balance through embankments in permafrost regions. Cold Reg. Sci. Technol. 158, 117–127 (2019). https://doi.org/10.1016/j.coldregions.2018.11.013

  6. Vaganova, N.A., Filimonov, M.Y.: Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields. AIP Conf. Proc. 1690, 020016 (2015). https://doi.org/10.1063/1.4936694

  7. Filimonov, M., Vaganova, N.: Permafrost thawing from different technical systems in arctic regions. IOP Conf. Ser. Earth Environ. Sci. 72, 012006 (2017). https://doi.org/10.1088/1755-1315/72/1/012006

  8. Voevodin, V. V., Antonov S. A., Dongarra, J.: AlgoWiki: an open encyclopedia of parallel algorithmic features. Supercomput. Front. Innov. 2(1), 4–18 (2015). https://doi.org/10.14529/jsfi150101

  9. Ortega, J. M.: Introduction to Parallel and Vector Solution of Linear Systems. Springer Science & Business Media, New York (2013). https://doi.org/10.1007/978-1-4899-2112-3

  10. Rodrigue, G. (Ed.): Parallel Computations, vol. 1. Elsevier, Amsterdam (2014)

    Google Scholar 

  11. Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., McDonald, J.: Parallel Programming in OpenMP. Morgan Kaufmann, Burlington (2001)

    Google Scholar 

  12. Pavlova, N.V., Vabishchevich, P.N., Vasilyeva, M.V.: Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 636–643. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43880-0_73

    Chapter  Google Scholar 

  13. Pepper, D. W., Lombardo, J. M.: High-Performance Computing for Fluid Flow and Heat Transfer. Advances in Numerical Heat Transfer, vol. 2. Routledge, Milton Park (2018)

    Google Scholar 

  14. Orgogozo, L., et al.: Water and energy transfer modeling in a permafrost-dominated, forested catchment of central Siberia: the key role of rooting depth. Permafr. Periglac. Process. 30(2), 75–89 (2019). https://doi.org/10.1002/ppp.1995

  15. Akimova, E.N., Filimonov, M.Y., Misilov, V.E., Vaganova, N.A.: Application of high performance computations for modeling thermal fields near the wellheads. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2020. CCIS, vol. 1263, pp. 266–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55326-5_19

    Chapter  Google Scholar 

  16. Samarskii, A.A., Nikolaev, E.S.: Methods of Solving Finite-Difference Equations. Moscow (1978). (in Russian)

    Google Scholar 

  17. Vaganova, N., Filimonov, M.: Parallel splitting and decomposition method for computations of heat distribution in permafrost. In: CEUR Workshop Proceedings, vol. 1513, pp. 42–49 (2015)

    Google Scholar 

  18. Akimova, E.N., Filimonov, M.Y., Misilov, V.E., Vaganova, N.A.: Simulation of thermal processes in permafrost: parallel implementation on multicore CPU. In: CEUR Workshop Proceedings, vol. 2274, pp. 1–9 (2018)

    Google Scholar 

  19. Intel Corporation: Introduction to the SIMD Data Layout Templates. https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/libraries/introduction-to-the-simd-data-layout-templates.html. Accessed 14 Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Akimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akimova, E.N., Misilov, V.E. (2022). Simulation of Nonstationary Thermal Fields in Permafrost Using Multicore Processors. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2022. Communications in Computer and Information Science, vol 1618. Springer, Cham. https://doi.org/10.1007/978-3-031-11623-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11623-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11622-3

  • Online ISBN: 978-3-031-11623-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics