Skip to main content

Kinetic Modeling of Isobutane Alkylation with Mixed C4 Olefins and Sulfuric Acid as a Catalyst Using the Asynchronous Global Optimization Algorithm

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2022)

Abstract

The paper considers the application of parallel computing technology to the simulation of a catalytic chemical reaction, which is widely used in the modern automobile industry to produce gasoline with a high octane number. As a chemical reaction, the process of alkylation of isobutane with mixed C4 olefins, catalyzed by sulfuric acid, is assumed. To simulate a chemical process, it is necessary to develop a kinetic model of the process, i.e., to determine the kinetic parameters. To do this, the inverse problem of chemical kinetics is solved; it predicts the values of the kinetic parameters based on laboratory data. From a mathematical point of view, the inverse problem of chemical kinetics is a global optimization problem. A parallel asynchronous information-statistical global search algorithm was used to solve it. The use of the asynchronous algorithm significantly reduced the search time to find the optimum. The found optimal parameters of the model made it possible to adequately simulate the process of alkylation of isobutane with mixed C4 olefins catalyzed by sulfuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkalov, K., Strongin, R.: Solving a set of global optimization problems by the parallel technique with uniform convergence. J. Global Optim. 71(1), 21–36 (2017). https://doi.org/10.1007/s10898-017-0555-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09624-7

  3. Cao, P., Zheng, L., Sun, W., Zhao, L.: Multiscale modeling of isobutane alkylation with mixed c4 olefins using sulfuric acid as catalyst. Indus. Eng. Chem. Res. 58(16), 6340–6349 (2019). https://doi.org/10.1021/acs.iecr.9b00874

    Article  Google Scholar 

  4. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

  5. Enikeev, M., et al.: Analysis of corrosion processes kinetics on the surface of metals. Chem. Eng. J. 383, 123, 131 (2020). https://doi.org/10.1016/j.cej.2019.123131

  6. Enikeeva, L., Marchenko, M., Smirnov, D., Gubaydullin, I.: Parallel gravitational search algorithm in solving the inverse problem of chemical kinetics. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 98–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_9

    Chapter  Google Scholar 

  7. Enikeeva, L.V., et al.: Gravitational search algorithm for determining the optimal kinetic parameters of propane pre-reforming reaction. React. Kinet. Mech. Catal. 132(1), 111–122 (2021). https://doi.org/10.1007/s11144-021-01927-8

    Article  Google Scholar 

  8. Evtushenko, Y., Malkova, V., Stanevichyus, A.A.: Parallel global optimization of functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009). https://doi.org/10.1134/S0965542509020055

    Article  MathSciNet  MATH  Google Scholar 

  9. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7, 819–829 (2013). https://doi.org/10.1007/s11590-012-0452-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Grishagin, V., Israfilov, R., Sergeyev, Y.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018). https://doi.org/10.1016/j.amc.2017.06.036

    Article  MathSciNet  MATH  Google Scholar 

  11. Hooke, R., Jeeves, T.: “Direct search” solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961). https://doi.org/10.1145/321062.321069

  12. Kalyulin, S., Shavrina, E., Modorskii, V., Barkalov, K., Gergel, V.: Optimization of drop characteristics in a carrier cooled gas stream using ANSYS and Globalizer software systems on the PNRPU high-performance cluster. Commun. Comput. Inf. Sci. 753, 331–345 (2017). https://doi.org/10.1007/978-3-319-67035-5_24

    Article  Google Scholar 

  13. Koledina, K.F., et al.: Kinetics and mechanism of the synthesis of Benzylbutyl ether in the presence of copper-containing catalysts. Russian J. Phys. Chem. A 93(11), 2146–2151 (2019). https://doi.org/10.1134/S0036024419110141

    Article  Google Scholar 

  14. Kvasov, D., Mukhametzhanov, M.: Metaheuristic vs. deterministic global optimization algorithms: the Univariate case. Appl. Math. Comput. 318, 245–259 (2018). https://doi.org/10.1016/j.amc.2017.05.014

  15. Modorskii, V., Gaynutdinova, D., Gergel, V., Barkalov, K.: Optimization in design of scientific products for purposes of cavitation problems. AIP Conf. Proc. 1738, 400013 (2016). https://doi.org/10.1063/1.4952201

  16. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-9093-7

  17. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). https://doi.org/10.1007/s11590-009-0156-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Paulavičius, R., Žilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination of Lipchitz bounds. Optim. Method. Softw. 26(3), 487–498 (2011). https://doi.org/10.1080/10556788.2010.551537

    Article  Google Scholar 

  19. Sergeyev, Y.D., Kvasov, D.E.: Deterministic global optimization: an introduction to the diagonal approach. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7199-2

  20. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves. Springer Briefs in Optimization, Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6

  21. Strongin R.G., Sergeyev Y.D.: Global Optimization With Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). https://doi.org/10.1007/978-1-4615-4677-1

  22. Uskov, S., et al.: Fibrous alumina-based Ni-MOx (M=Mg, Cr, Ce) catalysts for propane pre-reforming. Mater. Lett. 257, 126, 741 (2019). https://doi.org/10.1016/j.matlet.2019.126741

  23. Uskov, S.I., Potemkin, D.I., Enikeeva, L.V., Snytnikov, P.V., Gubaydullin, I.M., Sobyanin, V.A.: Propane pre-reforming into methane-rich gas over Ni catalyst: experiment and kinetics elucidation via genetic algorithm. Energies 13(13) (2020). https://doi.org/10.3390/en13133393

  24. Zaynullin, R.Z., Koledina, K.F., Gubaydullin, I.M., Akhmetov, A.F., Koledin, S.N.: Kinetic model of catalytic gasoline reforming with consideration for changes in the reaction volume and thermodynamic parameters. Kinet. Catal. 61(4), 613–622 (2020). https://doi.org/10.1134/S002315842004014X

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Science Foundation, project No. 21-11-00204, and the Russian Foundation for Basic Research, project No. 19-37-60014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Barkalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gubaydullin, I., Enikeeva, L., Barkalov, K., Lebedev, I., Silenko, D. (2022). Kinetic Modeling of Isobutane Alkylation with Mixed C4 Olefins and Sulfuric Acid as a Catalyst Using the Asynchronous Global Optimization Algorithm. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2022. Communications in Computer and Information Science, vol 1618. Springer, Cham. https://doi.org/10.1007/978-3-031-11623-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11623-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11622-3

  • Online ISBN: 978-3-031-11623-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics