Skip to main content

Do Consumers Maintain Diversity of Their Food Sources?

  • Chapter
  • First Online:
Biodiversity

Abstract

Nowadays, most ecologists agree that competition and exploitation might be prevailing in nature, but since they act in the opposite directions, they produce surprisingly balanced food webs where elimination of species becomes highly unlikely. In other words, it turned out quite unexpectedly that negative interspecific relations play a positive regulatory role by supporting species diversity, rather than reducing it. There are reasons to believe that species diversity at a lower trophic level is maintained by the ‘top-down’ impact produced by the next higher trophic level (‘exploiter-mediated coexistence’). This positive effect, however, is only observed in communities that have undergone a certain period of coadaptation.

It is not completely clear, whether parasites can affect the diversity of their hosts in a similar way, although many ecologists are positive about that. However, contrary to herbivores and predators, parasites are much more specialised in terms of feeding and seldom can easily switch from one food source to another.

Basically, there is no doubt that indirect mutually beneficial relations (that maintain diversity) are to be found throughout the entire ecological community, from its producers and detritophages up to the top predators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., et al. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85–88.

    Article  CAS  Google Scholar 

  • Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G., Knops, J. M. H., et al. (2006). Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecology Letters, 9, 780–788.

    Article  Google Scholar 

  • Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems (4th ed.). Blackwell Publ.

    Google Scholar 

  • Bell, T., Freckleton, R. P., & Lewis, O. T. (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569–574.

    Article  Google Scholar 

  • Berryman, A. A., & Kindlmann, P. (2008). Population systems: A general Inroduction (2nd ed.). Springer.

    Google Scholar 

  • Combes, C. (1996). Parasites, biodiversity and ecosystem stability. Biodiversity and Conservation, 5, 953–962.

    Article  Google Scholar 

  • Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. Den Boer & G. R. Gradwell (Eds.), Dynamics of populations (pp. 298–312). Wageningen.

    Google Scholar 

  • Darwin, C. (1872). The Origin of Species by Means of Natural Selection (6th ed.). John Murray (Printed in 1998 by Cox & Wyman). Reading.

    Google Scholar 

  • Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., Thébault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters, 10, 522–538.

    Article  Google Scholar 

  • Duggins, D. O. (1980). Kelp beds and sea otters: An experimental approach. Ecology, 61, 447–453.

    Article  Google Scholar 

  • Gwynne, M. D., & Bell, R. H. V. (1968). Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature, 220, 390–393.

    Article  CAS  Google Scholar 

  • Hairston, N. G., Smith, F. E., & Slobotkin, L. B. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.

    Article  Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–508.

    Article  Google Scholar 

  • Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., et al. (2008). Global trends in emerging infectious diseases. Nature, 451, 990–993.

    Article  CAS  Google Scholar 

  • Kohler, S. L., & Wiley, M. J. (1997). Pathogen outbreaks reveal large-scale effects of competition in stream communities. Ecology, 78, 2164–2176.

    Article  Google Scholar 

  • Krebs, C. J. (2009). Ecology: The experimental analysis of distribution and abundance. Benjamin Cummings.

    Google Scholar 

  • Kullberg, C., & Ekman, J. (2000). Does predation maintain tit community diversity? Oikos, 89, 41–45.

    Article  Google Scholar 

  • Mitchell, C. E., Tilman, D., & Groth, J. V. (2002). Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83, 1713–1726.

    Article  Google Scholar 

  • Mwendera, E. J., Saleem, M. A. M., & Woldu, Z. (1997). Vegetation response to cattle grazing in the Ethiopian highlands. Agriculture, Ecosystems and Environment, 64, 43–51.

    Article  Google Scholar 

  • Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). W. B. Saunders.

    Google Scholar 

  • Oksanen, L. (1988). Ecosystem organization: Mutualism and cybernetics or plain Darwinian struggle for existence? American Naturalist, 131, 424–444.

    Article  Google Scholar 

  • Olff, H., & Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology and Evolution, 13, 261–265.

    Article  CAS  Google Scholar 

  • Packer, A., & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–281.

    Article  CAS  Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–75.

    Article  Google Scholar 

  • Paine, R. T. (2002). Trophic control of production in a rocky intertidal community. Science, 296, 736–739.

    Article  CAS  Google Scholar 

  • Patten, B. C., & Odum, E. P. (1981). The cybernetic nature of ecosystems. The American Naturalist, 118, 886–895.

    Article  Google Scholar 

  • Pimentel, D., & Al-Hafidh, R. (1965). Ecological control of a parasite population by genetic evolution in the parasite-host system. Annals of the Entomological Society of America, 58, 1–6.

    Article  CAS  Google Scholar 

  • Pimentel, D., & Stone, F. A. (1968). Evolution and population ecology of parasite-host systems. Canadian Entomologist, 100, 655–662.

    Article  Google Scholar 

  • Porter, J. W. (1972). Predation by Acanthaster and its effect on coral species diversity. American Naturalist, 106, 487–492.

    Article  Google Scholar 

  • Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., et al. (2014). Status and ecological effects of the worlds largest carnivores. Science, 343, 1241484. https://doi.org/10.1126/science.1241484

    Article  CAS  PubMed  Google Scholar 

  • Robbins, J. (2004). Lessons from the wolf. Scientific American, 290(6), 44–49.

    Article  Google Scholar 

  • Schall, J. J. (1992). Parasite-mediated competition in Anolis lizards. Oecologia, 92, 58–64.

    Article  Google Scholar 

  • Smith, D. W., Peterson, R. O., & Houston, D. B. (2003). Yellowstone after wolves. Bioscience, 54, 330–340.

    Article  Google Scholar 

  • Wills, C., Harms, K. E., Condit, R., King, D., Thompson, J., et al. (2006). Nonrandom processes maintain diversity in tropical forests. Science, 311, 527–531.

    Article  CAS  Google Scholar 

  • Woolhouse, M. E., Taylor, L. H., & Haydon, D. T. (2001). Population biology of multihost pathogens. Science, 292, 1109–1112.

    Article  CAS  Google Scholar 

  • Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: The epidemiology and evolution of species jumps. Trends in Ecology and Evolution, 20, 238–244.

    Article  Google Scholar 

  • Zeevalking, J. I., & Fresco, L. F. M. (1977). Rabbit grazing and species diversity in a dune area. Vegetatio, 35, 193–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lekevičius, E. (2022). Do Consumers Maintain Diversity of Their Food Sources?. In: Biodiversity. Springer, Cham. https://doi.org/10.1007/978-3-031-11582-0_6

Download citation

Publish with us

Policies and ethics