Skip to main content

3D Printing in Nephrology

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

Renal replacement therapy is currently limited to dialysis and renal transplantation, and the development of new technologies to regenerate kidney function is being pursued. Bioengineered tissue regeneration can now produce three-dimensional (3D) structures, and bio-3D printing technology, a revolutionary advancement, has given hope to creating cell-derived kidney tissue. Bioprinting the entire functional kidney has not been completed, but some studies have done so with a portion of the nephron. Embryonic stem cells or induced pluripotent stem cell-derived kidney organoids have been generated, which functionally mature after transplantation. Kidney decellularization induces the urine excretion pathway, and the Kenzan method is anticipated to develop regenerative kidney medicine. Although there are many challenges in producing kidneys, combining these methods is expected to create transplantable kidneys for humans in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theo V, Boris B. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395:709–33. https://doi.org/10.1016/S0140-6736(20)30045-3.

    Article  Google Scholar 

  2. Charnley J. Arthroplasty of the hip. A new operation. Lancet. 1961;277:1129–32. https://doi.org/10.1016/S0140-6736(61)92063-3.

    Article  Google Scholar 

  3. De Bakey ME, Cooley DA. Successful resection of aneurysm of thoracic aorta and replacement by graft. JAMA. 1953;152:673–6. https://doi.org/10.1001/jama.1953.03690080017005.

    Article  Google Scholar 

  4. Liotta D, Crawford ES, Cooley DA, DeBakey ME, Urquia M, Feldman L. Prolonged partial left ventricular bypass by means of an intrathoracic pump implanted in the left chest. Trans Am Soc Artif Intern Organs. 1962;8:90–9. https://doi.org/10.1097/00002480-196204000-00022.

    Article  CAS  PubMed  Google Scholar 

  5. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97:695–710. https://doi.org/10.1084/jem.97.5.695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langer R, Vacanti JP. Tissue Eng. Science. 1993;260:920–6. https://doi.org/10.1126/science.8493529.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. https://doi.org/10.1038/nbt.2958.

    Article  CAS  PubMed  Google Scholar 

  8. Norotte C, Marga F, Niklason L, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–7. https://doi.org/10.1016/j.biomaterials.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fransen M, Addario G, Bouten C, Halary F, Moroni L, Mota C. Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem. 2021;65:587–602. https://doi.org/10.1042/EBC20200158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sundaramurthi D, Rauf S, Hauser C. 3D bioprinting technology for regenerative medicine applications. Int J Bioprint. 2016;2:9–26. https://doi.org/10.18063/IJB.2016.02.010.

    Article  CAS  Google Scholar 

  11. Ozbolat IT. Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med. 2015;6:024701. https://doi.org/10.1115/1.4030414.

    Article  CAS  Google Scholar 

  12. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332. https://doi.org/10.1016/j.addr.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct free form fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325–35. https://doi.org/10.1089/ten.2006.12.1325.

    Article  CAS  PubMed  Google Scholar 

  14. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng A. 2007;27:469–78. https://doi.org/10.1016/j.msec.2006.05.023.

    Article  CAS  Google Scholar 

  15. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43. https://doi.org/10.1016/j.biomaterials.2015.10.076.

    Article  CAS  PubMed  Google Scholar 

  16. Mohebi MM, Evans JR. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J Comb Chem. 2002;4:267–74. https://doi.org/10.1021/cc010075e.

    Article  CAS  PubMed  Google Scholar 

  17. Xu T, Kincaid H, Atala A, Yoo JJ. High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng. 2008;130:021017. https://doi.org/10.1115/1.2903064.

    Article  Google Scholar 

  18. Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6:149–55. https://doi.org/10.2174/187221112800672949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guillotin B, Catros S, Guillemot F. Laser assisted bio-printing (LAB) of cells and biomaterials based on laser induced forward transfer (LIFT). In: Schmidt V, Belegratis MR, editors. Laser technology in biomimetics. Berlin, Heidelberg: Springer; 2013. p. 193–209. https://doi.org/10.1007/978-3-642-41341-4_8.

    Chapter  Google Scholar 

  20. Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol. 2013;14:91–7. https://doi.org/10.2174/1389201011314010012.

    Article  CAS  PubMed  Google Scholar 

  21. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51. https://doi.org/10.1016/s0142-9612(03)00340-5.

    Article  CAS  PubMed  Google Scholar 

  22. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16. https://doi.org/10.22203/eCM.v005a01.

    Article  CAS  PubMed  Google Scholar 

  23. Moldovan NI, Hibino N, Nakayama K. Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev. 2016;23:237–44. https://doi.org/10.1089/ten.teb.2016.0322.

    Article  CAS  Google Scholar 

  24. Nakayama K. In vitro biofabrication of tissue and organs. In: Forgacs G, Sun W, editors. Biofabrication: micro-and nano-fabrication, printing, patterning and assemblies. Oxford: Elsevier; 2013. p. 1–21.

    Google Scholar 

  25. Murata D, Arai K, Nakayama K. Scaffold-free bio-3D printing using spheroids as “bio-inks” for tissue (re-)construction and drug response tests. Adv Healthc Mater. 2020;9:1901831. https://doi.org/10.1002/adhm.201901831.

    Article  CAS  Google Scholar 

  26. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312–9. https://doi.org/10.1038/nbt.3413.

    Article  CAS  PubMed  Google Scholar 

  27. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain JC, Catros S. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2:014101. https://doi.org/10.1088/1758-5082/2/1/014101.

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Shi J, Ma K, Jin J, Wang P, Liang H, Cao Y, Wang X, Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2021;30:75–84. https://doi.org/10.1016/j.jare.2020.11.011.

    Article  PubMed  Google Scholar 

  29. Feehally J, Floege J, Tonelli M, Johnson RJ. Comprehensive clinical nephrology. 6th ed. Oxford: Elsevier; 2019.

    Google Scholar 

  30. Merrill JP, Murray JE, Harrison JH, Guild WR. Successful homotransplantation of the human kidney between identical twins. JAMA. 1956;160:277–82. https://doi.org/10.1001/jama.1956.02960390027008.

    Article  CAS  Google Scholar 

  31. Zheng YX, Yu DF, Zhao JG, Wu YL, Zheng B. 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J Surg Educ. 2016;73:518–23. https://doi.org/10.1016/j.jsurg.2016.01.003.

    Article  PubMed  Google Scholar 

  32. Shilo D, Emodi O, Blanc O, Noy D, Rachmiel A. Printing the future-updates in 3D printing for surgical applications. Rambam Maimonides Med J. 2018;9:e0020. https://doi.org/10.5041/rmmj.10343.

    Article  PubMed Central  Google Scholar 

  33. Agung NP, Nadhif MH, Irdam GA, Mochtar CA. The role of 3D-printed phantoms and devices for organ-specified appliances in urology. Int J Bioprint. 2021;7:333. https://doi.org/10.18063/ijb.v7i2.333.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Atala A. Printing a human kidney: TED®. 2011. http://www.ted.com/talks/antony_atala_printing_a_human_kidney. Accessed 7 Mar 2011.

  35. Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: strategies to achieve organ function. Chem Rev. 2020;120:11093–127. https://doi.org/10.1021/acs.chemrev.0c00145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peired AJ, Mazzinghi B, Chiara LD, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther. 2020;20:467–80. https://doi.org/10.1080/14712598.2020.1709439.

    Article  PubMed  Google Scholar 

  37. Madariaga MLL, Ott HC. Bioengineering kidneys for transplantation. Semin Nephrol. 2014;34:384–93. https://doi.org/10.1016/j.semnephrol.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reint G, Rak-Raszewska A, Vainio SJ. Kidney development and perspectives for organ engineering. Cell Tissue Res. 2017;369:171–83. https://doi.org/10.1007/s00441-017-2616-x.

    Article  PubMed  Google Scholar 

  39. King SM, Higgins JW, Nino CR, Smith TR, Paffenroth EH, Fairbairn CE, Docuyanan A, Shah VD, Chen AE, Presnell SC, Nguyen DG. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol. 2017;8:123. https://doi.org/10.3389/fphys.2017.00123.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016;6:34845. https://doi.org/10.1038/srep34845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin NYC, Homan KA, Robinson SS, Kolesky DB, Duarte N, Moisan A, Lewis JA. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci. 2019;116:5399–404. https://doi.org/10.1073/pnas.1815208116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods. 2016;99:112–9. https://doi.org/10.1016/j.ymeth.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  43. Kasyanov V, Brakke K, Vilbrandt T, Moreno-Rodriguez R, Nagy-Mehesz A, Visconti R, Markwald R, Ozolanta I, Rezende R, Lixandrão Filho AL, Inforçati Neto P, Pereira FDAS, Kemmoku DT, da Silva JVL, Mironov V. Toward organ printing: design characteristics, virtual modelling and physical prototyping vascular segments of kidney arterial tree. Virtual Phys Prototyp. 2011;6:197–213. https://doi.org/10.1080/17452759.2011.631738.

    Article  Google Scholar 

  44. Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development. 2015;142:1937–47. https://doi.org/10.1242/dev.104802.

    Article  CAS  PubMed  Google Scholar 

  45. Tan Z, Rak-Raszewska A, Skovorodkin I, Vainio JS. Mouse embryonic stem cell-derived ureteric bud progenitors induce nephrogenesis. Cell. 2020;9:329. https://doi.org/10.3390/cells9020329.

    Article  CAS  Google Scholar 

  46. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67. https://doi.org/10.1016/j.stem.2013.11.010.

    Article  CAS  PubMed  Google Scholar 

  47. Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26. https://doi.org/10.1038/ncb2894.

    Article  CAS  PubMed  Google Scholar 

  48. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33:1193–200. https://doi.org/10.1038/nbt.3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mae S, Ryosaka M, Toyoda T, Matsuse K, Oshima Y, Tsujimoto H, Okumura S, Shibasaki A, Osafune K. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochem Biophys Res Commun. 2018;495:954–61. https://doi.org/10.1016/j.bbrc.2017.11.105.

    Article  CAS  PubMed  Google Scholar 

  50. Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017;21:730–46. https://doi.org/10.1016/j.stem.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  51. Mae S, Ryosaka M, Sakamoto S, Matsuse K, Nozaki A, Igami M, Kabai R, Watanabe A, Osafune K. Expansion of human iPSC-derived ureteric bud organoids with repeated branching potential. Cell Rep. 2020;32:107963. https://doi.org/10.1016/j.celrep.2020.107963.

    Article  CAS  PubMed  Google Scholar 

  52. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Sousa Lopes CSM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8. https://doi.org/10.1038/nature15695.

    Article  CAS  PubMed  Google Scholar 

  53. Shankar AS, Du Z, Mora HT, Bosch TPP, Korevaar SS, Berg-Garrelds IM, Bindels E, Lopez-Iglesias C, Groningen MCC, Gribnau J, Baan CC, Danser AHJ, Hoorn EJ, Hoogduijn MJ. Human kidney organoids produce functional renin. Kidney Int. 2021;99:134–47. https://doi.org/10.1016/j.kint.2020.08.088.

    Article  CAS  PubMed  Google Scholar 

  54. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human induced pluripotent stem cell–derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol. 2016;27:1778–91. https://doi.org/10.1681/ASN.2015010096.

    Article  CAS  PubMed  Google Scholar 

  55. Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23:1857–68. https://doi.org/10.1681/ASN.2012050505.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K, Nakauchi H, Yoshikawa HY, Taniguchi H. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015;16:556–65. https://doi.org/10.1016/j.stem.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  57. Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, Okano HJ, Yokoo T. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat Commun. 2017;8:1719. https://doi.org/10.1038/s41467-017-01922-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, Matsumoto K, Nagashima H, Kobayashi E, Yokoo T. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A. 2015;112:12980–5. https://doi.org/10.1073/pnas.1507803112//-/DCSupplemental.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Destefani AC, Sirtoli GM, Nogueira BV. Advances in the knowledge about kidney decellularization and repopulation. Front Bioeng Biotechnol. 2017;5:34. https://doi.org/10.3389/fbioe.2017.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Song JJ, Guyette J, Gilpin S, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51. https://doi.org/10.1038/nm.3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S. Scaffold-free tubular tissues created by a bio-3d printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10:e0136681. https://doi.org/10.1371/journal.pone.0136681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Itoh M, Mukae Y, Kitsuka T, Arai K, Nakamura A, Uchihashi K, Toda S, Matsubayashi K, Oyama J, Node K, Kami D, Gojo S, Morita S, Nishida T, Nakayama K, Kobayashi E. Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes. Nat Commun. 2019;10:2244. https://doi.org/10.1038/s41467-019-10107-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama J, Node K, Morita S. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35:137–45. https://doi.org/10.1016/j.healun.2015.06.001.

    Article  PubMed  Google Scholar 

  64. Taniguchi D, Matsumoto K, Tsuchiya T, Machino R, Takeoka Y, Elgalad A, Gunge K, Takagi K, Taura Y, Hatachi G, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg. 2018;6:745–52. https://doi.org/10.1093/icvts/ivx444.

    Article  Google Scholar 

  65. Takeoka Y, Matsumoto K, Taniguchi D, Tsuchiya T, Machino R, Moriyama M, Oyama S, Tetsuo T, Taura Y, Takagi K, Yoshida T, Elgalad A, Matsuo N, Kunizaki M, Tobinaga S, Nonaka T, Hidaka S, Yamasaki N, Nakayama K, Nagayasu T. Regeneration of esophagus using a scaffold- free biomimetic structure created with bio-three-dimensional printing. PLoS One. 2019;14:e0211339. https://doi.org/10.1371/journal.pone.0211339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yanagi Y, Nakayama K, Taguchi T, Enosawa S, Tamura T, Yoshimaru K, Matsuura T, Hayashida M, Kohashi K, Oda Y, Yamaza T, Kobayashi E. In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep. 2017;7:14085. https://doi.org/10.1038/s41598-017-14542-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by bio-3D printer. Regener Ther. 2021;16:81–9. https://doi.org/10.1016/j.reth.2021.02.001.

    Article  CAS  Google Scholar 

  68. Zhang XY, Yanagi Y, Sheng Z, Nagata K, Nakayama K, Taguchi T. Regeneration of diaphragm with bio-3D cellular patch. Biomaterials. 2018;167:1–14. https://doi.org/10.1016/j.biomaterials.2018.03.012.

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto T, Funahashi Y, Mastukawa Y, Tsuji Y, Mizuno H. MP19-17 human urethra-engineered with human mesenchymal stem cell with maturation by rearrangement of cells for self-organization—newly developed scaffold-free three-dimensional bio-printer. J Urol. 2015;193:e221–2. https://doi.org/10.1016/j.juro.2015.02.1009.

    Article  Google Scholar 

  70. Murata D, Kunitomi Y, Harada K, Tokunaga S, Takao S, Nakayama K. Osteochondral regeneration using scaffold-free constructs of adipose tissue-derived mesenchymal stem cells made by a bio three-dimensional printer with a needle-array in rabbits. Regener Ther. 2020;15:77–89. https://doi.org/10.1016/j.reth.2020.05.004.

    Article  Google Scholar 

  71. Murata D, Akieda S, Misumi K, Nakayama K. Osteochondral regeneration with a scaffold-free three-dimensional construct of adipose tissue-derived mesenchymal stromal cells in pigs. Tissue Eng Regener Med. 2017;15:101–13. https://doi.org/10.1007/s13770-017-0091-9.

    Article  CAS  Google Scholar 

  72. Mitsuzawa S, Zhao C, Ikeguchi R, Aoyama T, Kamiya D, Ando M, Takeuchi H, Akieda S, Nakayama K, Matsuda S, Ikeya M. Pro-angiogenic scaffold-free bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci Rep. 2020;10:12034. https://doi.org/10.1038/s41598-020-68745-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama K, Matsuda S. Long-term outcome of sciatic nerve regeneration using bio3d conduit fabricated from human fibroblasts in a rat sciatic nerve model. Cell Transplant. 2021;30:1–12. https://doi.org/10.1177/09636897211021357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nonaka, T., Nagaishi, Y., Murata, D., Hara, H., Nakayama, K. (2022). 3D Printing in Nephrology. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics